【題目】如圖在矩形ABCD中,AB=5,AD=2,點(diǎn)E在線(xiàn)段AB上,且BE=1,將△ADE沿DE折起到A1DE的位置,使得平面A1DE⊥平面BCDE.
(1)求證:CE⊥平面A1DE;
(2)線(xiàn)段A1C上是否存在一點(diǎn)F,使得BF//平面A1DE?說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)存在點(diǎn)F(A1C的五等分點(diǎn)靠近點(diǎn)A1),使得BF//平面A1DE,理由詳見(jiàn)解析.
【解析】
(1)因?yàn)槠矫?/span>A1DE⊥平面BCDE,所以要證明CE⊥平面A1DE,只需證明CE⊥DE即可;
(2)取CD上點(diǎn)M,使DM=1=BE,易得BM∥平面A1DE,在△A1DC內(nèi),作MF∥A1D交A1C于F,易得MF∥平面A1DE,進(jìn)一步得到平面FMB∥平面A1DE,即可得到答案.
(1)證明:如圖,在矩形ABCD中,AB=5,AD=2,
點(diǎn)E在線(xiàn)段AB上,且BE=1,∴,
,CD=5,
∴,∴CE⊥DE,
∵平面A1DE⊥平面BCDE,平面A1DE平面BCDE,平面BCDE,
∴CE⊥平面A1DE.
(2)取CD上點(diǎn)M,使DM=1=BE,又,
∴ DMBE為平行四邊形,∴,又DE平面,平面,
∴平面A1DE,
在△A1DC內(nèi),作交A1C與F,因?yàn)?/span>平面,平面,
所以平面A1DE,又,∴平面平面A1DE,
又平面FMB,∴平面A1DE,
,,
故存在點(diǎn)F(A1C的五等分點(diǎn)靠近點(diǎn)A1),使得平面A1DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有一分鹿問(wèn)題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問(wèn)各得幾何.”在這個(gè)問(wèn)題中,大夫、不更、簪裊、上造、公士是古代五個(gè)不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務(wù),則大夫、不更恰好在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.若樣本數(shù)據(jù),,…,的平均數(shù)為5,則樣本數(shù)據(jù),,…,的平均數(shù)為10
B.用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加某項(xiàng)活動(dòng),若抽取的學(xué)號(hào)為5,16,27,38,49,則該班學(xué)生人數(shù)可能為60
C.某種圓環(huán)形零件的外徑服從正態(tài)分布(單位:),質(zhì)檢員從某批零件中隨機(jī)抽取一個(gè),測(cè)得其外徑為,則這批零件不合格
D.對(duì)某樣本通過(guò)獨(dú)立性檢驗(yàn),得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,則在該樣本吸煙的人群中有的人可能患肺病
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓上三個(gè)不同的點(diǎn),若坐標(biāo)原點(diǎn)為的重心,則的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月1日起鄭州市施行《鄭州市城市生活垃圾分類(lèi)管理辦法》,鄭州將正式進(jìn)入城市生活垃圾分類(lèi)時(shí)代.為了增強(qiáng)社區(qū)居民對(duì)垃圾分類(lèi)知識(shí)的了解,積極參與到垃圾分類(lèi)的行動(dòng)中,某社區(qū)采用線(xiàn)下和線(xiàn)上相結(jié)合的方式開(kāi)展了一次200名轄區(qū)成員參加的“垃圾分類(lèi)有關(guān)知識(shí)”專(zhuān)題培訓(xùn).為了了解參訓(xùn)成員對(duì)于線(xiàn)上培訓(xùn)、線(xiàn)下培訓(xùn)的滿(mǎn)意程度,社區(qū)居委會(huì)隨機(jī)選取了40名轄區(qū)成員,將他們分成兩組,每組20人,分別對(duì)線(xiàn)上、線(xiàn)下兩種培訓(xùn)進(jìn)行滿(mǎn)意度測(cè)評(píng),根據(jù)轄區(qū)成員的評(píng)分(滿(mǎn)分100分)繪制了如圖所示的莖葉圖.
(1)根據(jù)莖葉圖判斷轄區(qū)成員對(duì)于線(xiàn)上、線(xiàn)下哪種培訓(xùn)的滿(mǎn)意度更高,并說(shuō)明理由.
(2)求這40名轄區(qū)成員滿(mǎn)意度評(píng)分的中位數(shù),并將評(píng)分不超過(guò)、超過(guò)分別視為“基本滿(mǎn)意”“非常滿(mǎn)意”兩個(gè)等級(jí).
(ⅰ)利用樣本估計(jì)總體的思想,估算本次培訓(xùn)共有多少轄區(qū)成員對(duì)線(xiàn)上培訓(xùn)非常滿(mǎn)意;
(ⅱ)根據(jù)莖葉圖填寫(xiě)下面的列聯(lián)表.
基本滿(mǎn)意 | 非常滿(mǎn)意 | 總計(jì) | |
線(xiàn)上培訓(xùn) | |||
線(xiàn)下培訓(xùn) | |||
總計(jì) |
并根據(jù)列聯(lián)表判斷能否有99.5%的把握認(rèn)為轄區(qū)成員對(duì)兩種培訓(xùn)方式的滿(mǎn)意度有差異?
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:的離心率為,長(zhǎng)軸長(zhǎng)為4,、分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線(xiàn)與橢圓相交于,兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)記、的面積分別為、,若,求的值;
(Ⅲ)設(shè)線(xiàn)段的中點(diǎn)為,直線(xiàn)與直線(xiàn)相交于點(diǎn),記直線(xiàn)、、的斜率分別為、、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn),,,,為橢圓的四個(gè)頂點(diǎn)(如圖),直線(xiàn)過(guò)右頂點(diǎn)且垂直于軸.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)為上一點(diǎn)(軸上方),直線(xiàn),分別交橢圓于,兩點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓:中,,,,的面積為1,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點(diǎn),、是橢圓的左右兩個(gè)焦點(diǎn),直線(xiàn)、分別交于、,是否存在點(diǎn),使,若存在,求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com