先后擲兩個均勻正方體骰子(六個面分別標(biāo)有點數(shù)1,2,3,4,5,6),骰子朝上的面的點數(shù)分別為X,Y.
問:
(1)X+Y=8的概率是多少?
(2)log2xY=1的概率為多少?
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(1)根據(jù)題意,列舉骰子朝上的面的點數(shù)的全部情況,可得其情況數(shù)目,求出滿足X+Y=8的事件個數(shù),代入古典概型概率公式,可得答案.
(2)再根據(jù)對數(shù)的運(yùn)算性質(zhì),轉(zhuǎn)化出X、Y之間的關(guān)系,可得滿足log2XY=1的情況數(shù)目,代入古典概型概率公式,可得答案.
解答: 解:擲兩個均勻骰子,按骰子朝上的面的點數(shù)不同,共有36種情況,
分別為(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
6,1),(6,2),(6,3),(6,4),(6,5),(6,6),
(1)其中滿足X+Y=8的事件有:(2,6),(3,5),(4,4),(5,3),(6,2)共5種,
故X+Y=8的概率P=
5
36
,
(2)要log2XY=1,有2X=Y,其中X,Y∈{1,2,3,4,5,6}
滿足條件的有(1,2),(2,4),(3,6);
則其概率為
3
36
=
1
12

故滿足log2XY=1的概率為
1
12
點評:本題考查列舉法求古典概型,注意在列舉事件基本情況時要做到不重不漏.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有一批金屬零件,其中80%的重量不少于3公斤,現(xiàn)從這批零件中任取100個,試求其中至少有30個重量少于3公斤的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

調(diào)查某桑場采桑員和輔助工關(guān)于桑毛蟲皮炎發(fā)病情況結(jié)果如表:
采桑不采桑合計
患者人數(shù)1812
健康人數(shù)578
合計
(1)完成2×2列聯(lián)表;
(2)利用2×2列聯(lián)表的獨立性檢驗估計,你是否有99%把握認(rèn)為“患桑毛蟲皮炎病與采!庇嘘P(guān)?
p(K2≥k0 0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象,并根據(jù)圖象說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù).
(1)y=x2-5x-6;
(2)y=9-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),若f(0)=1,f(x+1)-f(x)=2x,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,點(n,Sn)在曲線y=x2-11x上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
an+12
2n+1
,數(shù)列{bn}的前n項和為Tn,若2Tn>m-2對n∈N*恒成立,求最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某市的人大賄選案中,經(jīng)調(diào)查統(tǒng)計該市人大代表的受賄情況的頻率分布直方圖如圖:其中受賄[10,20]萬元的有10人.
(1)請?zhí)骄吭谶@次賄選案該市人大代表中有多少人沒有受賄,及這次賄選案中人均受賄多少萬元
(2)現(xiàn)從受賄40萬元以上的代表中選兩人調(diào)查受賄原因,求所選兩人中恰有一人受賄超過50萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a、b是不全為零的實數(shù),求證3ax2+2bx-(a+b)=0在(0,1)至少有一個根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為正方體ABCD-A1B1C1D1對角線BD1上的一點,且BP=λBD1(λ∈(0,1)).下面命題正確的為:
 
(寫出所有正確結(jié)論的序號):
①A1D⊥C1P;     
②若BD1⊥平面PAC,則λ=
1
3
;
③若△PAC為鈍角三角形,則λ∈(0,
1
2
);
④若λ∈(0,
1
2
),則△PAC為銳角三角形.

查看答案和解析>>

同步練習(xí)冊答案