11.設(shè)集合U=R,A={x||x-1|<1},B={x|x2+x-2<0};
(1)求:A∩B,(∁UA)∪B;
(2)設(shè)集合C={x|2-a<x<a},若C⊆(A∪B),求a的取值范圍.

分析 求出A與B中不等式的解集確定出A與B,
(1)求出兩集合的交集,找出A補集與B的并集即可;
(2)根據(jù)C為A與B交集的子集,確定出a的范圍即可.

解答 解:由A中不等式變形得:-1<x-1<1,即0<x<2,即A=(0,2),
由B中不等式解得:-2<x<1,即B=(-2,1),
(1)A∩B=(0,1),∁UA=(-∞,0]∪[2,+∞),
則(∁UA)∪B=(-∞,1)∪[2,+∞);
(2)∵A∪B=(-2,2),C={x|2-a<x<a},且C⊆(A∪B),
(i)當C=∅時,則有2-a≥a,解得:a≤1;
(ii)當C≠∅時,則有$\left\{\begin{array}{l}{2-a<a}\\{2-a≥-2}\\{a≤2}\end{array}\right.$,解得:1<a≤2,
綜上:a的取值范圍為a≤2.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(1,-x),$\overrightarrow$=(x+2,x)(x∈R).
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求x的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求|$\overrightarrow{a}$-$\overrightarrow$|.
(3)若$\overrightarrow{a}$⊥$\overrightarrow$,且x<0,$\overrightarrow{AB}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{a}$,求△ABC的邊長AC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知 命題 M:2x-3<7;命題N:x2-7x+10≤0.求:
(1)命題¬N中x的范圍?
(2)命題(¬M)∩N中x的范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)為奇函數(shù),且當x>0時,f(x)=2x,則f(-2)的值是( 。
A.-4B.$-\frac{1}{4}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.角β的終邊和角α=-1035°的終邊相同,則cosβ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知命題p:?x∈R,x2+2x+a≤0是真命題,則實數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F(xiàn)為橢圓的右焦點,點A,B分別為橢圓的上下頂點,過點B作AF的垂線,垂足為M.
(1)若$a=\sqrt{2}$,△ABM的面積為1,求橢圓方程;
(2)是否存在橢圓,使得點B關(guān)于直線AF對稱的點D仍在橢圓上.若存在,求橢圓的離心率的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中:①3牛頓的力一定大于2牛頓的力;②長度相等的向量叫做相等向量;③一個向量的相等向量有無數(shù)多個;④若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$;⑤單位向量都大于零向量.正確的有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等差數(shù)列{an}的首項a1=1,a5+a7=32,則該等差數(shù)列的公差為3.

查看答案和解析>>

同步練習(xí)冊答案