已知單調遞增的等差數(shù)列{an}滿足a1=2,且a1,a2,a4成等比數(shù)列,其前n項和為Sn
(Ⅰ)求數(shù)列{an}的通項公式及Sn;
(Ⅱ)設bn=
Sn
n
,求數(shù)列{
1
bnbn+1
}的前n項和Tn
考點:數(shù)列的求和,等比數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)設等差數(shù)列{an}的公差為d(d>0),由已知結合a1,a2,a4成等比數(shù)列求得等差數(shù)列的公差,則等差數(shù)列的通項公式和前n項和公式可求;
(Ⅱ)把等差數(shù)列的前n項和代入bn=
Sn
n
,整理后代入
1
bnbn+1
,然后利用裂項相消法求數(shù)列的和.
解答: 解:(Ⅰ)設等差數(shù)列{an}的公差為d(d>0),
由a1=2,且a1,a2,a4成等比數(shù)列,得
(2+d)2=2(2+3d),解得:d=2.
∴an=2+2(n-1)=2n,
Sn=2n+
2n(n-1)
2
=n2+n
;
(Ⅱ)由bn=
Sn
n
=
n2+n
n
=n+1
,
1
bnbn+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,
則Tn=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)

=
1
2
-
1
n+2
=
n+2-2
2(n+2)
=
n
2n+4
點評:本題考查了等差數(shù)列的通項公式,考查了等比數(shù)列的性質,訓練了裂項相消法求數(shù)列的前n項和,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的前n項和Sn=2n+1-2
(1)求該數(shù)列首項和公比;  
(2)若bn=log2an,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-3|+1,g(x)=kx,若函數(shù)F(x)=f(x)-g(x)有兩個零點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校為了了解學生的課外閱讀情況,隨機抽查了50名學生,得到他們某一天各自課外閱讀的時間數(shù)據(jù)如圖所示,根據(jù)條形圖可得到這50名學生該天每人的平均課外閱讀時間為
 
h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3[(5+k)x2+6x+k+5].
(1)若函數(shù)f(x)的定義域為R,求k的取值范圍;
(2)若函數(shù)f(x)的值域為R,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:lg2x-4lgx+3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)如圖信息,求這個二次函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:mx-(m+1)y-2=0,l2:x+2y+1=0,l3:y=x-2是三條不同的直線,其中m∈R.
(Ⅰ)求證:直線l1恒過定點,并求出該點的坐標;
(Ⅱ)若l2,l3的交點為圓心,2
3
為半徑的圓C與直線l1相交于A,B兩點,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結論正確的是( 。
A、若向量
a
b
,則存在唯一的實數(shù)λ使得
a
b
B、已知向量
a
,
b
,為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
b
<0”
C、命題:若x2=1,則x=1或x=-1,故當x≥1的逆否命題為:若x≠1且x≠-1,則x2≠1
D、若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0

查看答案和解析>>

同步練習冊答案