17.函數(shù)f(x)=$\frac{1}{3}$x3-ax在R上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.a≥0B.a≤0C.a>0D.a<0

分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為即a≤x2在R恒成立,從而求出a的范圍即可.

解答 解:f′(x)=x2-a,
若f(x)在R遞增,
則x2-a≥0在R恒成立,
即a≤x2在R恒成立,
故a≤0,
故選:B.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線x+y-2=0和ax-y+1=0的夾角為$\frac{π}{3}$,則a的值為2±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若{an}為等差數(shù)列,且a2+a5+a8=39,則a1+a2+…+a9的值為( 。
A.114B.117C.111D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在復(fù)平面內(nèi),復(fù)數(shù)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一個焦點恰好與拋物線y2=8x的焦點重合,則雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若cos2α=$\frac{3}{5}$,則sin4α+cos4α的值是(  )
A.$\frac{17}{25}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{33}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知A,B,C為銳角△ABC的內(nèi)角,$\overrightarrow{a}$=(sinA,sinBsinC),$\overrightarrow$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow$.
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)U=R,A={x|x≤2,或x≥5},B=$\{x|\frac{2x-5}{x+2}<1\}$,C={x|a<x<a+1}
(1)求A∪B和(∁UA)∩B
(2)若B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知7cos2α-sinαcosα-1=0,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cos2α和$sin({2α+\frac{π}{4}})$的值.

查看答案和解析>>

同步練習(xí)冊答案