分析 ①利用倍角公式、和差公式、三角函數的圖象與性質即可得出.
②把點P(α,$\frac{8}{3}$)代入f(x),化簡整理利用倍角公式即可得出.
解答 解:①$f(x)=cos2x-sin2x+2=\sqrt{2}cos(2x+\frac{π}{4})+2$,
將f(x)的圖象向左平移m個單位得函數$y(x)=\sqrt{2}cos(2x+2m+\frac{π}{4})+2$,
其對稱軸為$x=\frac{17}{8}π$,
∴$2×\frac{17}{8}π+2m+\frac{π}{4}=kπ(k∈Z),又m>0$,
∴${m_{min}}=\frac{π}{4}$.
②∵$f(α)=\sqrt{2}cos(2α+\frac{π}{4})+2=\frac{8}{3}$,
∴$cos(2α+\frac{π}{4})=\frac{{\sqrt{2}}}{3}$,
令$t=2α+\frac{π}{4}$,則$cost=\frac{{\sqrt{2}}}{3}$,$2α=t-\frac{π}{4}$,$4α=2t-\frac{π}{2}$,
∴$sin4α=sin(2t-\frac{π}{2})=-cos2t=1-2{cos^2}t=1-2×\frac{2}{9}=\frac{5}{9}$.
點評 本題考查了倍角公式、和差公式、三角函數的圖象與性質、平移變換,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$) | B. | f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$) | C. | f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$) | D. | f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$cos5° | B. | -$\sqrt{2}$cos5° | C. | -$\sqrt{2}$sin5° | D. | $\sqrt{2}$sin5° |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com