16.在平面直角坐標(biāo)系中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,若曲線C的極坐標(biāo)方程為ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.直線l與曲線C相交于A、B兩點,則|AB|=$\sqrt{15}$.

分析 分別求出直線l和曲線C的普通方程,得出曲線C的圓心,計算圓心到直線l的距離,利用勾股定理得出弦長.

解答 解:直線l的普通方程為y=$\sqrt{3}$x,即$\sqrt{3}$x-y=0.
曲線C的普通方程為x2+y2-2y-3=0,即x2+(y-1)2=4,
∴曲線C表示以(0,1)為圓心,以r=2為半徑的圓,
∴圓心(0,1)到直線l的距離d=$\frac{1}{2}$,
∴|AB|=2$\sqrt{{r}^{2}-uhztbr4^{2}}$=$\sqrt{15}$.
故答案為:$\sqrt{15}$.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知關(guān)于x的方程4x2+4(k+2)x+(2k2+2k+1)=0的兩實根為α,β,則(α+1)(β+1)的取值范圍是[-$\frac{7}{8}$,$\frac{9}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項和為Sn,且a2=2,S11=66.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求證:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BAD=60°,AB=4,AD=2,側(cè)棱PB=$\sqrt{15}$,PD=$\sqrt{3}$.
(1)求證:BD⊥平面PAD;
(2)若PD與底面ABCD成60°的角,試求二面角P-BC-A所成的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow a$=($\sqrt{3}$cosωx,-1),$\overrightarrow b$=(sinωx,cos2ωx+$\frac{1}{2}$),(ω>0),函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$的最小正周期為π.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)設(shè)△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若c=$\sqrt{3}$,f(C)=0,而且滿足sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知將函數(shù)f(x)=sin2x-2sinxcosx+3cos2x(x∈R)的圖象沿x軸向左平移m個單位(m>0)所得函數(shù)的圖象關(guān)于直線x=$\frac{17}{8}$π對稱.
①求m的最小值;
②已知點P(α,$\frac{8}{3}$)是函數(shù)y=f(x)的圖象上的一點,求sin4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點為F,過F且垂直于x軸的直線與雙曲線的漸近線在第一象限交于點A,點O為坐標(biāo)原點,點H滿足$\overrightarrow{FH}$•$\overrightarrow{OA}$=0,$\overrightarrow{OA}$=4$\overrightarrow{OH}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.小明在“歐洲七日游”的游玩中對某著名建筑物的景觀記憶猶新,現(xiàn)繪制該建筑物的三視圖如圖所示,若網(wǎng)格紙上小正方形的邊長為1,則小明繪制的建筑物的體積為( 。
A.16+8πB.64+8πC.64+$\frac{8π}{3}$D.16+$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{1}{\sqrt{2-x}}$+lg(1+x)的定義域是( 。
A.(-2,-1)B.(-1,+∞)C.(-1,2)D.(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊答案