將函數(shù)y=sin2x+
3
cos2x(x∈R)的圖象向左平移φ(φ>0)個(gè)單位長(zhǎng)度后,所得到的一個(gè)偶函數(shù)的圖象,則φ的最小值是( 。
A、
π
12
B、
π
6
C、
π
3
D、
6
考點(diǎn):兩角和與差的正弦函數(shù),函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:將y=f(x)=sin2x+
3
cos2x化為f(x)=2sin(2x+
π
3
),再利用函數(shù)y=Asin(ωx+φ)的圖象變換,結(jié)合題意,可求得φ的最小值.
解答: 解:∵y=f(x)=sin2x+
3
cos2x
=2(
1
2
sin2x+
3
2
cos2x)
=2sin(2x+
π
3
),
將函數(shù)y=sin2x+
3
cos2x(x∈R)的圖象向左平移φ(φ>0)個(gè)單位長(zhǎng)度
得到f(x+φ)=2sin(2x+2φ+
π
3
),
∵f(x+φ)為偶函數(shù),
∴2φ+
π
3
=kπ+
π
2
,k∈Z,
∴φ=
2
+
π
12
,k∈Z,
又φ>0,
∴φmin=
π
12

故選:A.
點(diǎn)評(píng):本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查正弦函數(shù)的對(duì)稱(chēng)性,突出考查正弦函數(shù)與余弦函數(shù)的轉(zhuǎn)化,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(-3,3),N(-5,-1),那么
MN
等于(  )
A、(-2,-4)
B、(-4,-2)
C、(2,4)
D、(4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=5與y=-1在區(qū)間[0,π]上截曲線(xiàn)y=Asin2x+B(A>0,B>0)所得的線(xiàn)段長(zhǎng)相等且不為0,則下列描述正確的是( 。
A、A≤
3
2
,B=
5
2
B、A≤3,B=2
C、A>
3
2
,B=
5
2
D、A>3,B=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x+y)n的展開(kāi)式中,若第九項(xiàng)系數(shù)最大,則n的值可能等于( 。
A、14,15
B、15,16
C、16,17
D、14,15,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足約束條件
x-2≤0
y+2≥0
x-y+4≥0
,設(shè)(x,y)表示的平面區(qū)域?yàn)镸,在區(qū)域M內(nèi)任取一點(diǎn),則此點(diǎn)到直線(xiàn)y=x-2的距離大于
2
的概率為( 。
A、
1
4
B、
3
4
C、
1
2
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)中,△ABC的三個(gè)頂點(diǎn)A、B、C,下列結(jié)論正確的個(gè)數(shù)是( 。
(1)平面內(nèi)點(diǎn)G滿(mǎn)足
GA
+
GB
+
GC
=
0
,則G是△ABC的重心;
(2)平面內(nèi)點(diǎn)M滿(mǎn)足|
MA
=|
MB
|=|
MC
|,點(diǎn)M是△ABC的內(nèi)心;
(3)平面內(nèi)點(diǎn)P滿(mǎn)足
AB
AP
|
AB
|
=
AC
AP
|
AC
|
,則點(diǎn)P在邊BC的垂線(xiàn)上.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在2014年春節(jié)期間,某市物價(jià)部門(mén),對(duì)本市五個(gè)商場(chǎng)銷(xiāo)售的某商品一天的銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,五個(gè)商場(chǎng)的售價(jià)x元和銷(xiāo)售量y件之間的一組數(shù)據(jù)如下表所示:
價(jià)格x 9 9.5 10.5 11
銷(xiāo)售量y 11 10 6 5
通過(guò)分析,發(fā)現(xiàn)銷(xiāo)售量y對(duì)商品的價(jià)格x具有線(xiàn)性相關(guān)關(guān)系,
(1)求銷(xiāo)售量y對(duì)商品的價(jià)格x的回歸直線(xiàn)方程?
(2)預(yù)測(cè)銷(xiāo)售量為24件時(shí)的售價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)在定義域R上是增函數(shù),值域?yàn)椋?,+∞),且滿(mǎn)足:f(-x)=
1
f(x)
.設(shè)F(x)=
1-f(x)
1+f(x)

(1)求函數(shù)y=F(x)值域和零點(diǎn);
(2)判斷函數(shù)y=F(x)奇偶性和單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,c=6,∠C=
π
2
,且acosB=bsinA.
(1)求∠B的值;
(2)若點(diǎn)E,P分別在邊AB,BC上,且AE=4,AP⊥CE,求AP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案