直線y=5與y=-1在區(qū)間[0,π]上截曲線y=Asin2x+B(A>0,B>0)所得的線段長(zhǎng)相等且不為0,則下列描述正確的是( 。
A、A≤
3
2
,B=
5
2
B、A≤3,B=2
C、A>
3
2
,B=
5
2
D、A>3,B=2
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由于曲線y=Asin2x+B(A>0,B>0)的周期T=
2
=π,依題意,可求得B=2,A>3.
解答: 解:∵曲線y=Asin2x+B(A>0,B>0)的周期T=
2
=π,
直線y=5與y=-1在區(qū)間[0,π]截曲線y=Asin2x+B(A>0,B>0)所得的弦長(zhǎng)相等且不為零,
∴B=
5-1
2
=2;
A+2>5,
∴A>3.
故選:D.
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求得B=2是關(guān)鍵,也是難點(diǎn),考查理解與應(yīng)用能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在0到2π范圍內(nèi),與角-
3
終邊相同的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

使不等式2n>n2對(duì)任意n≥k(k>1)的自然數(shù)都成立的最小k值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面上滿足線性約束條件
x≥2
x+y≤0
x-y-10≤0
的點(diǎn)(x,y)形成的區(qū)域?yàn)镸,區(qū)域M關(guān)于直線y=2x對(duì)稱的區(qū)域?yàn)镹,則區(qū)域M,N中距離最近的兩點(diǎn)間的距離為(  )
A、
6
5
5
B、
12
5
5
C、
8
3
5
D、
16
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,現(xiàn)要檢查它們的運(yùn)行情況,統(tǒng)計(jì)10天中,兩臺(tái)機(jī)床每天出的次品數(shù)分別是
0 1 0 2 2 0 3 1 2 4
2 3 1 1 0 2 1 1 0 1
兩臺(tái)機(jī)床出次品較少的是( 。
A、甲B、乙C、一樣D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將長(zhǎng)為L(zhǎng)的木棒隨機(jī)折成3段,則3段構(gòu)成三角形的概率是( 。
A、
1
5
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)的圖象關(guān)于直線x=
3
對(duì)稱,它的周期是π,則以下結(jié)論正確的個(gè)數(shù)( 。
(1)f(x)的圖象過(guò)點(diǎn)(0,
1
2
)  
(2)f(x)的一個(gè)對(duì)稱中心是(
12
,0

(3)f(x)在[
π
12
3
]上是減函數(shù)
(4)將f(x)的圖象向右平移|φ|個(gè)單位得到函數(shù)y=3sinωx的圖象.
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sin2x+
3
cos2x(x∈R)的圖象向左平移φ(φ>0)個(gè)單位長(zhǎng)度后,所得到的一個(gè)偶函數(shù)的圖象,則φ的最小值是( 。
A、
π
12
B、
π
6
C、
π
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinx+
3
cosx,x∈R.
(1)求f(x)最小正周期;
(2)求f(x)的最大值及相應(yīng)的x值;
(3)用五點(diǎn)法畫(huà)出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象(要求列表描點(diǎn)作圖).

查看答案和解析>>

同步練習(xí)冊(cè)答案