5.如圖,直線l是曲線y=f(x)在x=4處的切線,則f(4)+f′(4)的值為5.5.

分析 先從圖中求出切線過(guò)的點(diǎn),利用導(dǎo)數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為斜率得到切線的斜率,最后結(jié)合導(dǎo)數(shù)的幾何意義求出f′(4)的值.

解答 解:如圖可知f(4)=5,f'(4)的幾何意義是表示在x=4處切線的斜率,故$f'(4)=\frac{5-3}{4-0}=\frac{1}{2}$,
故f(4)+f'(4)=5.5.
故答案為:5.5

點(diǎn)評(píng) 解決有關(guān)曲線的切線問(wèn)題常考慮導(dǎo)數(shù)的幾何意義:曲線在切點(diǎn)處的導(dǎo)數(shù)值為曲線的切線的斜率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知sinα+cosα=$\frac{1}{3}$,α∈(0,π),則$\frac{sinα-cosα}{{sin\frac{7π}{12}}}$的值為$\frac{\sqrt{17}(\sqrt{6}-\sqrt{2})}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,其中n∈N*
(1)若a1=b1=2,a3-b3=9,a5=b5,試分別求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)A={k|ak=bk,k∈N*},當(dāng)數(shù)列{bn}的公比q<-1時(shí),求集合A的元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某校社團(tuán)聯(lián)即將舉行一屆象棋比賽,規(guī)則如下:兩名選手比賽時(shí),每局勝者得1分,負(fù)者得0分,不出現(xiàn)平局,且比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)結(jié)束.假設(shè)選手甲與選手乙比賽時(shí),甲每局獲勝的概率皆為$\frac{3}{4}$,且各局比賽勝負(fù)互不影響.
(Ⅰ)求比賽進(jìn)行4局結(jié)束,且甲比乙多得2分的概率;
(Ⅱ)設(shè)ξ表示比賽結(jié)束時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{2\sqrt{2}}}{3}$,B(0,1)為橢圓的一個(gè)頂點(diǎn),直線l交橢圓于P,Q(異于點(diǎn)B)兩點(diǎn),BP⊥BQ.
(Ⅰ)求橢圓方程;
(Ⅱ)求△BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是正方體被切割后剩余部分的幾何體的三視圖,則該幾何體的棱長(zhǎng)不可能為(  )
A.4$\sqrt{3}$B.$\sqrt{17}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=e2x-ax+2(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)在曲線y=f(x)上是否存在兩點(diǎn)A(x1,y1),B(x2,y2),(x1≠x2),使得該曲線在A,B兩點(diǎn)處的切線相交于點(diǎn)P(0,t)?若存在,求實(shí)數(shù)t的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=ex(3x-1)-ax+a,其中a<1,若僅有一個(gè)整數(shù)x0,使得f(x0)<0,則a的取值范圍是( 。
A.[-$\frac{2}{e}$,1)B.[-$\frac{2}{e}$,$\frac{3}{4}$)C.[$\frac{2}{e}$,$\frac{3}{4}$)D.[$\frac{2}{e}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在10°,40°,80°,130°,190°這五個(gè)角中任選2個(gè)角,它們的度數(shù)之和記為α,則cosα>0的概率為$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案