3.設(shè)有半徑為4km的圓形村落,A,B兩人同時(shí)從村落中心出發(fā),B向北直行,A先向東直行,出村后不久,改變前進(jìn)方向,沿著與村落周界相切的直線前進(jìn),后來恰與B相遇.設(shè)A,B兩人速度一定,其速度比為4:1,問兩人在何處相遇?

分析 如圖所示:設(shè)BO=x,OA=y,則AB=4x-y.在Rt△AOB中由勾股定理得:x2+y2=(4x-y)2,解得:y=$\frac{15x}{8}$.最后在△AOB中利用面積法可求得:x=$\frac{68}{15}$,從而可確定出兩人相遇出的位置.

解答 解:如圖所示:
設(shè)BO=x,OA=y,則AB=4x-y.
在Rt△AOB中,由勾股定理得:OB2+OA2=AB2,即x2+y2=(4x-y)2,
整理得:15x2-8xy=0.
解得:x=0(舍去),y=$\frac{15x}{8}$.
∴AB=4x-$\frac{15x}{8}$=$\frac{17x}{8}$.
∵AB是圓O的切線,
∴OC⊥AB.
∵$\frac{1}{2}•OA•OB=\frac{1}{2}•AB•OC$,
∴$\frac{1}{2}•x•\frac{15}{8}x=\frac{1}{2}×4×\frac{17}{8}x$.解得:x=$\frac{68}{15}$.
答:兩人在距離村中心正北$\frac{68}{15}$千米處相遇.

點(diǎn)評(píng) 本題主要考查的是勾股定理、切線的性質(zhì),利用面積法求得x的值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱柱P-ABCD中,底面ABCD為矩形,△PCD為等邊三角形,$BC=\sqrt{2}AB$,點(diǎn)M為BC中點(diǎn),平面PCD⊥平面ABCD.
(1)求證:PD⊥BC;
(2)求二面角P-AM-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示是一個(gè)幾何體的三視圖,則這個(gè)幾何體的表面積是( 。
A.3+$\frac{\sqrt{3}}{2}$B.2+$\sqrt{3}$C.2+$\frac{\sqrt{6}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在位于城市A南偏西60°相距100海里的B處,一股臺(tái)風(fēng)沿著正東方向襲來,風(fēng)速為120海里/小時(shí),臺(tái)風(fēng)影響的半徑為r(r>50)海里:
(1)若r=70,求臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間(精確到1分鐘)?
(2)若臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間不超過1小時(shí),求r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.蘇州市舉辦“廣電狂歡購(gòu)物節(jié)”促銷活動(dòng),某廠商擬投入適當(dāng)?shù)膹V告費(fèi),對(duì)所售產(chǎn)品進(jìn)行促銷,經(jīng)調(diào)查測(cè)算,該促銷產(chǎn)品在狂歡購(gòu)物節(jié)的銷售量p萬件與廣告費(fèi)用 x萬元滿足p=3-$\frac{2}{x+1}$(其中 0≤x≤a,a為正常數(shù)).已知生產(chǎn)該批產(chǎn)品 p萬件還需投入成本(10+2p)萬元(不含廣告費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+$\frac{20}{p}}$)元/件,假定廠商生產(chǎn)的產(chǎn)品恰好能夠售完.
(1)將該產(chǎn)品的利潤(rùn)y萬元表示為廣告費(fèi)用x萬元的函數(shù);
(2)問廣告費(fèi)投入多少萬元時(shí),廠商的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.移動(dòng)公司為了了解4G用戶的使用情況,隨機(jī)抽取了60名男手機(jī)用戶,50名女手機(jī)用戶,統(tǒng)計(jì)數(shù)據(jù)如表所示,試確定是否為4G用戶與性別有關(guān)的把握約為( 。
使用4G未使用4G總計(jì)
男用戶402060
女用戶203050
總計(jì)6050110
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P( K2≥k00.5000.1000.0500.0100.001
k00,4552,7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{1+x}{1-x}$e-ax,若對(duì)任意x∈(0,1),恒有f(x)>1,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,2]B.(-∞,0]C.[0,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示的程序運(yùn)行后輸出的結(jié)果是13.

查看答案和解析>>

同步練習(xí)冊(cè)答案