分析 復數(shù)z=(1+i)m2+(5-2i)m+(6-15i)=(m2+5m+6)+(m2-2m-15)i.
(1)由m2-2m-15=0,解得m即可得出.
(2)由$\left\{\begin{array}{l}{{m}^{2}+5m+6=0}\\{{m}^{2}-2m-25≠0}\end{array}\right.$,解得m即可得出.
(3)由(m2+5m+6)+(m2-2m-15)+7=0.解出即可得出.
解答 解:復數(shù)z=(1+i)m2+(5-2i)m+(6-15i)=(m2+5m+6)+(m2-2m-15)i.
(1)由m2-2m-15=0,解得m=5或-3.
∴m=5或-3時,復數(shù)z為實數(shù).
(2)由$\left\{\begin{array}{l}{{m}^{2}+5m+6=0}\\{{m}^{2}-2m-25≠0}\end{array}\right.$,解得m=-2.
∴m=-2時,復數(shù)z為純虛數(shù).
(3)由(m2+5m+6)+(m2-2m-15)+7=0.
化為:2m2+3m-2=0,
解得m=$\frac{1}{2}$或-2.
∴m=$\frac{1}{2}$或-2,z對應點在直線x+y+7=0上.
點評 本題考查了復數(shù)的運算法則及其有關(guān)概念,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a-c=0且b-d≠0 | B. | a-c=0且b+d≠0 | C. | a+c=0且b+d≠0 | D. | a+c≠0且b+d=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com