【題目】科赫曲線(xiàn)是一種外形像雪花的幾何曲線(xiàn),一段科赫曲線(xiàn)可以通過(guò)下列操作步驟構(gòu)造得到.任畫(huà)一條線(xiàn)段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把“中間一段”去掉,這樣,原來(lái)的條線(xiàn)段就變成了4條小線(xiàn)段構(gòu)成的折線(xiàn),稱(chēng)為“一次構(gòu)造”;用同樣的方法把每一條小線(xiàn)段重復(fù)上述步驟,得到了16條更小的線(xiàn)段構(gòu)成的折線(xiàn),稱(chēng)為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科曲線(xiàn).若要科赫曲線(xiàn)的長(zhǎng)度達(dá)到原來(lái)的100倍,至少需要通過(guò)構(gòu)造的次數(shù)是( ).(取

A.15B.16C.17D.18

【答案】C

【解析】

由折線(xiàn)長(zhǎng)度變化規(guī)律得到n次構(gòu)造后,曲線(xiàn)的長(zhǎng)度為,建立不等式,利用對(duì)數(shù)運(yùn)算求解.

設(shè)原線(xiàn)段長(zhǎng)為a,經(jīng)過(guò)n次構(gòu)造后,曲線(xiàn)的長(zhǎng)度為

則經(jīng)過(guò)1次構(gòu)造后,曲線(xiàn)的長(zhǎng)度為,

經(jīng)過(guò)2次構(gòu)造后,曲線(xiàn)的長(zhǎng)度為,

經(jīng)過(guò)3次構(gòu)造后,曲線(xiàn)的長(zhǎng)度為,

依次類(lèi)推,

經(jīng)過(guò)n次構(gòu)造后,曲線(xiàn)的長(zhǎng)度為,

若要科赫曲線(xiàn)的長(zhǎng)度達(dá)到原來(lái)的100倍,

,

所以

所以至少需要通過(guò)構(gòu)造的次數(shù)是17.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示日至日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是(

A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)

B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù)

C.日至日新增確診人數(shù)波動(dòng)最大

D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在日左右達(dá)到峰值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓Q:(x2)2+(y2)2=1,拋物線(xiàn)Cy2=4x的焦點(diǎn)為F,過(guò)F的直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn),過(guò)F且與l垂直的直線(xiàn)l'與圓Q有交點(diǎn).

1)求直線(xiàn)l'的斜率的取值范圍;

2)求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠(chǎng)為了研究印刷單冊(cè)書(shū)籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表.

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,方程甲:,方程乙:.

1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

i)完成下表(計(jì)算結(jié)果精確到0.1);

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

ii)分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較,的大小,判斷哪個(gè)模型擬合效果更好.

2)該書(shū)上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠(chǎng)決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為10千冊(cè),若印刷廠(chǎng)以每?jī)?cè)5元的價(jià)格將書(shū)籍出售給訂貨商,試估計(jì)印刷廠(chǎng)二次印刷獲得的利潤(rùn).(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為,左、右焦點(diǎn)分別為、,上頂點(diǎn)為,右頂點(diǎn)為,且、、成等比數(shù)列.

1)求橢圓的離心率;

2)判斷的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)在北宋1084年第一次印刷出版了《算經(jīng)十書(shū)》,即賈憲的《黃帝九章算法細(xì)草》,劉益的《議古根源》,秦九韶的《數(shù)書(shū)九章》,李冶的《測(cè)圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學(xué)啟蒙》和《四元玉鑒》.這些書(shū)中涉及的很多方面都達(dá)到古代數(shù)學(xué)的高峰,其中一些算法如開(kāi)立方和開(kāi)四次方也是當(dāng)時(shí)世界數(shù)學(xué)的高峰.某圖書(shū)館中正好有這十本書(shū)現(xiàn)在小明同學(xué)從這十本書(shū)中任借兩本閱讀,那么他取到的書(shū)的書(shū)名中有字的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè)成立; 成立. 如果“”為真,“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,在中,的中點(diǎn),四邊形是等腰梯形,,

(Ⅰ)求異面直線(xiàn)所成角的正弦值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線(xiàn)與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求的解析式及單調(diào)區(qū)間;

(2)若對(duì)任意的,恒成立,證明.

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊(cè)答案