(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x,0).若x>2,試用x表示線段AB中點(diǎn)的橫坐標(biāo).
【答案】
分析:(1)根據(jù)題意將直線l
1,直線l
2,分別與拋物線方程聯(lián)立,求得點(diǎn)A,B的坐標(biāo),再利用斜率公式可求斜率;
(2)推廣:已知拋物線y
2=2px上有一定點(diǎn)P,過(guò)點(diǎn)P作斜率分別為k、-k的兩條直線l
1、l
2,分別交拋物線于A、B兩點(diǎn),試計(jì)算直線AB的斜率.再利用(1)的方法求得點(diǎn)A,B的坐標(biāo),從而利用斜率公式可求斜率;
(3)先求出線段AB(不平行于y軸)的垂直平分線的方程,再確定其線段AB中點(diǎn)的橫坐標(biāo).
解答:解:(1)由
解得A(16,-8);由
解得B(0,0).
由點(diǎn)斜式寫(xiě)出兩條直線l
1、l
2的方程,l
1:x+y-8=0;l
2:x-y=0,所以直線AB的斜率為
. …(4分)
(2)推廣:已知拋物線y
2=2px上有一定點(diǎn)P,過(guò)點(diǎn)P作斜率分別為k、-k的兩條直線l
1、l
2,分別交拋物線于A、B兩點(diǎn),試計(jì)算直線AB的斜率.
過(guò)點(diǎn)P(x
,y
),斜率互為相反數(shù)的直線可設(shè)為y=k(x-x
)+y
,y=k(x-x
)+y
,其中y
2=2px
.
由
得ky
2-2py+2py
-ky
2=0,所以
同理,把上式中k換成-k得
,所以
當(dāng)P為原點(diǎn)時(shí)直線AB的斜率不存在,當(dāng)P不為原點(diǎn)時(shí)直線AB的斜率為
.
(3)設(shè)A(x
1,y
1),B(x
2,y
2),則y
i2=4x
i(i=1,2). …(13分)
設(shè)線段AB的中點(diǎn)是M(x
m,y
m),斜率為k,則
=
,…(15分)
線段AB的垂直平分線l的方程為
,…(17分)
又點(diǎn)Q(x
,0)在直線l上,所以
,
而y
m≠0,于是x
m=x
-2.故線段AB中點(diǎn)的橫坐標(biāo)為x
-2. …(18分)
點(diǎn)評(píng):本題的考點(diǎn)是直線與圓錐曲線的綜合問(wèn)題,主要考查直線與拋物線的位置關(guān)系,考查斜率公式,有較強(qiáng)的綜合性