若函數(shù)f(x)=
ax+1
x+2
在x∈(-2,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(
1
2
,+∞)
C、(-∞,
1
2
D、(0,
1
2
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先變形得:f(x)=
ax+1
x+2
=
a(x+2)+1-2a
x+2
=a+
1-2a
x+2
,利用已知函數(shù)的單調(diào)性可得1-2a>0.
解答: 解:f(x)=
ax+1
x+2
=
a(x+2)+1-2a
x+2
=a+
1-2a
x+2
,
∵f(x)=
ax+1
x+2
在x∈(-2,+∞)上單調(diào)遞減,
∴1-2a>0,解得a<
1
2
,即實(shí)數(shù)a的取值范圍是(-∞,
1
2
),
故選C.
點(diǎn)評(píng):該題考查函數(shù)的單調(diào)性及其應(yīng)用,屬基礎(chǔ)題,熟練掌握常見基本初等函數(shù)的單調(diào)性可簡(jiǎn)化求解過程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-a|,(a≠0)
(1)寫出f(x)的單調(diào)區(qū)間(用a表示)
(2)若f(x)在[3,+∞)上單調(diào)遞增,求a的取值范圍
(3)若f(x)在(m,n)上既存在最大值又存在最小值,求m和n的取值范圍(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是三角形的三邊,且直線ax+by+c=0與圓x2+y2=1相離,則此三角形( 。
A、是銳角三角形
B、是直角三角形
C、是鈍角三角形
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2|x|-1 (-3≤x≤3).
(1)證明f(x)是偶函數(shù);
(2)畫出這個(gè)函數(shù)的圖象并求函數(shù)的值域(直接寫出結(jié)果).
(3)指出函數(shù)f(x)的單調(diào)區(qū)間,并說明在各個(gè)單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(4)當(dāng)m為何值時(shí),方程x2-2|x|-1=m有4個(gè)互不相等的實(shí)數(shù)根?(直接寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
8
+
5
,b=
7
+
6
,則a
 
b(填“>”或“<”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求(
1
16
 -
1
2
+(-
2
3
0-
434
+log39的值
(2)求y=
log
1
2
(3x-2)
x-1
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為△ABC所在平面外一點(diǎn),AC=
2
a,連接PA、PB、PC,得△PAB和△PBC都是邊長(zhǎng)為a的等邊三角形,則平面ABC和平面PAC的位置關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在用模擬試驗(yàn)估算如圖1陰影部分(拋物線y=x2與直線x=1,x軸所圍成的圖形)面積時(shí),利用計(jì)算器產(chǎn)生[0,1]上兩個(gè)隨機(jī)數(shù),得到一個(gè)點(diǎn)(x,y),現(xiàn)試驗(yàn)100次,得到100個(gè)點(diǎn):(x1,y1),(x2,y2) (x3,y3),…,(x100,y100).為了統(tǒng)計(jì)落入圖1陰影部分的點(diǎn)的個(gè)數(shù),設(shè)計(jì)如圖所示的程序框圖.
(1)請(qǐng)把圖2中的程序框圖補(bǔ)充完整:
 
,②
 
,③
 

(2)在(1)的基礎(chǔ)上,寫出該程序框圖所對(duì)應(yīng)的程序.
(3)若執(zhí)行該程序后得到S=30,試根據(jù)該結(jié)果估算圖1中陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2=1},集合N={x|ax=1},若N?M,a的值是( 。
A、1B、-1
C、1或-1D、0,1或-1

查看答案和解析>>

同步練習(xí)冊(cè)答案