分析 (1)(2)(3)利用二倍角和輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的對稱軸及對稱中心.
解答 解:函數(shù)f(x)=$\sqrt{3}sinxcosx-{sin^2}x+\frac{1}{2}$.
化簡可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}+\frac{1}{2}$cos2x$+\frac{1}{2}$,
∴$f(x)=sin(2x+\frac{π}{6})$,
(1)f(x)的最小正周期T=$\frac{2π}{2}$=π;
(2)令$-\frac{π}{2}+2kπ≤$$2x+\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z,
得:$-\frac{π}{3}+kπ$≤x≤$\frac{π}{6}+kπ$.
∴f(x)的單調(diào)遞增區(qū)間為$[{-\frac{π}{3}+kπ,\frac{π}{6}+kπ}],k∈Z$;
(3)令$2x+\frac{π}{6}$=$\frac{π}{2}+kπ$,k∈Z
可得:$x=\frac{π}{6}+\frac{kπ}{2},k∈Z$,
∴對稱軸$x=\frac{π}{6}+\frac{kπ}{2},k∈Z$,
令$2x+\frac{π}{6}$=kπ,k∈Z.
得:x=$-\frac{π}{12}+\frac{1}{2}kπ$
∴對稱中心$(-\frac{π}{12}+\frac{kπ}{2},0),k∈Z$.
點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若我是高考狀元,則我沒有考入北大 | |
B. | 若我不是高考狀元,則我考入北大 | |
C. | 若我沒有考入北大,則我不是高考狀元 | |
D. | 若我不是高考狀元,則我沒有考入北大 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com