15.已知A,B兩地的距離是120km,按交通法規(guī)規(guī)定,A,B兩地之間的公路車速應(yīng)限制在50~100km/h,假設(shè)汽油的價格是6元/升,以xkm/h速度行駛時,汽車的耗油率為$(4+\frac{x^2}{360})L/h$,司機每小時的工資是36元,那么最經(jīng)濟的車速是多少?如果不考慮其他費用,這次行車的總費用是多少?

分析 設(shè)汽車以xkm/h行駛時,列出行車的總費用$y=[36+6•(4+\frac{x^2}{360})]•\frac{120}{x}=\frac{7200}{x}+2x$,50≤x≤100,通過函數(shù)的導(dǎo)數(shù),轉(zhuǎn)化求解函數(shù)的最值即可.

解答 解:設(shè)汽車以xkm/h行駛時,行車的總費用$y=[36+6•(4+\frac{x^2}{360})]•\frac{120}{x}=\frac{7200}{x}+2x$,50≤x≤100
所以${y^'}=-\frac{7200}{x^2}+2$
令y′=0,解得x=60(km/h)
容易得到,x=60是函數(shù)y的極小值點,也是最小值點,即當(dāng)車速為60km/h時,行車總費用最少,
此時最少總費用$y=\frac{7200}{60}+2×60=240$(元)
答:最經(jīng)濟的車速約為60km/h;如果不考慮其他費用,這次行車的總費用約為240元.

點評 本題考查函數(shù)的實際應(yīng)用,函數(shù)的導(dǎo)數(shù)求解函數(shù)的最值,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某興趣小組在網(wǎng)上看見一則消息稱哈爾濱工業(yè)大學(xué)男女比例近似滿足4:1,由于哈工大的專業(yè)偏向理科,該小組猜想高中生的文理科選修與性別有關(guān).為了判斷高中生的文理科選修是否與性別有關(guān),該小組隨機調(diào)查了100名學(xué)生的情況,得到如下圖所示的2×2列聯(lián)表
理科文科合計
30
3545
合計60
(1)請補全該2×2列聯(lián)表.
(2)試通過計算說明,能否有99%的把握認為高中生的文理科選修是與性別有關(guān).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=({a+b+c+d})$
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
K00.4450.7081.3232.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列哪個函數(shù)是周期為π的偶函數(shù)(  )
A.y=sin2xB.y=|sin2x|C.y=cos2xD.y=|cos2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2},B={x|x=a+b,a∈A,b∈A},則集合B中元素個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.閱讀如圖程序框圖,為使輸出的數(shù)據(jù)為40,則①處應(yīng)填的自然數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a=({cos{{45}°},sin4{5°}})$,$\vec b=({cos{{15}°},sin{{15}°}})$,$\vec a•\vec b$=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{{x}^{2}+1}{x+a}$(x≠-a)在x=1時取得極值,則f(1)是函數(shù)f(x)的( 。
A.極小值B.極大值
C.可能是極大值也可能是極小值D.是極小值且也是最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=(x-3)3+(x-1),數(shù)列{an}是公差不為零的等差數(shù)列,f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“若a2+b2=0,則a,b都為零”的否命題是( 。
A.若a2+b2≠0,則a,b都不為零B.若a2+b2≠0,則a,b不都為零
C.若a,b都不為零,則a2+b2≠0D.若a,b不都為零,則a2+b2≠0

查看答案和解析>>

同步練習(xí)冊答案