13.已知i是虛數(shù)單位,若復(fù)數(shù)z=-i(a+i)(a∈R)的實(shí)部與虛部相等,則z的共軛復(fù)數(shù)${\;}_{z}^{-}$=( 。
A.-1+iB.1+iC.1-iD.-1-i

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡z,再由實(shí)部和虛部相等求得a,則z可求,$\overline{z}$可求.

解答 解:由z=-i(a+i)=1-ai的實(shí)部與虛部相等,可得a=-1,
∴z=1+i,
則$\overline{z}=1-i$.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=axlnx+b,g(x)=x2+kx+3,曲線y=f(x)在(1,f(1))處的切線方程為y=x-1.
(1)若f(x)在(b,m)上有最小值,求m的取值范圍;
(2)當(dāng)x∈[$\frac{1}{e}$,e]時(shí),若關(guān)于x的不等式2f(x)+g(x)≥0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知(1-3x)n的展開式中,末三項(xiàng)的二項(xiàng)式系數(shù)的和等于 121,求展開式中系數(shù)最小的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)隨機(jī)變量X,Y滿足:Y=3X-1,X~B(2,p),若P(X≥1)=$\frac{5}{9}$,則D(Y)=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a>1,b>1,且a$+b=4\sqrt{2}$,則log2a+log2b的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z1=6+6i,z2=2i,若z1,z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)分別為A,B,線段AB的中點(diǎn)C對應(yīng)的復(fù)數(shù)為z,則|z|=( 。
A.$\sqrt{5}$B.5C.10D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某產(chǎn)品近四年的廣告費(fèi)x萬元與銷售額y萬元的統(tǒng)計(jì)數(shù)據(jù)如下表:
x40203050
y490260390540
根據(jù)此表可得回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的$\widehat$=9.4,據(jù)此模型預(yù)測下一年該產(chǎn)品廣告費(fèi)預(yù)算為60萬元時(shí),其銷售額為( 。
A.650萬元B.655萬元C.677萬元D.720萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x+2x,g(x)=x+lnx,$h(x)=x-\sqrt{x}-1$的零點(diǎn)分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是( 。
A.x2<x1<x3B.x1<x2<x3C.x1<x3<x2D.x2<x3<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若log2(log3x)=log3(log2y)=2,則x+y=593.

查看答案和解析>>

同步練習(xí)冊答案