分析 由已知利用正弦定理可求sinC=$\frac{\sqrt{2}}{2}$,利用大邊對大角可求∠C的值,利用兩角和的正弦函數(shù)公式可求sinB,進而利用正弦定理即可求得AC的值.
解答 解:∵$∠A=\frac{π}{3}$,BC=3,$AB=\sqrt{6}$,
∴sinC=$\frac{AB•sinA}{BC}$=$\frac{\sqrt{6}×\frac{\sqrt{3}}{2}}{3}$=$\frac{\sqrt{2}}{2}$,
∵AB<BC,可得:∠C<∠A,
∴∠C=$\frac{π}{4}$,
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}+\frac{1}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴AC=$\frac{BC•sinB}{sinA}$=$\frac{3×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{3}}{2}}$=$\frac{{\sqrt{6}+3\sqrt{2}}}{2}$.
故答案為:$\frac{π}{4}$,$\frac{{\sqrt{6}+3\sqrt{2}}}{2}$.
點評 本題主要考查了正弦定理,大邊對大角,兩角和的正弦函數(shù)公式在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
同意 | 不同意 | 合計 | |
女學生 | 4 | 3 | 7 |
男學生 | 4 | 2 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com