6.如圖,F(xiàn)1、F2是雙曲線$\frac{x^2}{9}-\frac{y^2}{b^2}=1(b>0)$的左、右焦點,過F1的直線l與雙曲線分別交于點A、B,若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.$8\sqrt{3}$B.$9\sqrt{3}$C.$18\sqrt{3}$D.$27\sqrt{3}$

分析 由雙曲線的定義,可得|BF1|=2a,|BF2|=|BF1|+2a=4a,即可求出△BF1F2的面積.

解答 解:根據(jù)雙曲線的定義,可得|AF1|-|AF2|=2a,
∵△ABF2是等邊三角形,即|AF2|=|AB|
∴|AF1|-|AB|=|BF1|=2a
又∵|BF2|-|BF1|=2a,
∴|BF2|=|BF1|+2a=4a,
在雙曲線中:a2=9,
∴△BF1F2的面積為$\frac{1}{2}•2a•4a•\frac{\sqrt{3}}{2}$=18$\sqrt{3}$.
故選:C.

點評 本題給出經(jīng)過雙曲線左焦點的直線被雙曲線截得弦AB與右焦點構(gòu)成等邊三角形,求三角形的面積,著重考查了雙曲線的定義和簡單幾何性質(zhì)等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平行四邊形ABCD中,E,F(xiàn)分別是CD和BC的中點,若$\overrightarrow{AE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),則2x+y=2;若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{AF}$(λ,μ∈R),則3λ+3μ=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n為偶數(shù)}\\{{a}_{n}+1,n為奇數(shù)}\end{array}\right.$,若bn=a2n-1-1.
(Ⅰ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項和為Sn,求S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x與y之間的一組數(shù)據(jù):
x34557
y24568
則y與x的線性回歸方程為y=bx+a必過( 。
A.(5,5)B.(4.5,5)C.(4.8,5)D.(5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow$=(5$\sqrt{3}$cosx,cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow{a}$|2-$\frac{7}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈($\frac{2π}{3}$,$\frac{11π}{12}$)時,f(x)=-3,求cos2x的值;
(3)若cosx≥$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x)=m有且僅有一個實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{7}cosα\\ y=\sqrt{7}sinα\end{array}\right.$(其中α為參數(shù)),曲線${C_2}:{({x-1})^2}+{y^2}=1$,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;
(Ⅱ)若射線$θ=\frac{π}{3}({ρ>0})$與曲線C1,C2分別交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lg$\frac{1+ax}{1-x}$(a>0)為奇函數(shù),函數(shù)g(x)=$\frac{2}{{x}^{2}}$+b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,討論方徎g(x)=ln|x|實數(shù)根的個數(shù);
(Ⅲ)當(dāng)x∈[$\frac{1}{3}$,$\frac{1}{2}$]時,關(guān)于x的不等式f(1-x)≤lgg(x)有解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過點A(1,2)且平行于直線3x+2y-1=0的直線方程為( 。
A.2x-3y+4=0B.3x-2y+1=0C.2x+3y-8=0D.3x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x-b(2≤x≤4,b為常數(shù))的圖象經(jīng)過點(3,1),則f(x)的值域為( 。
A.[4,16]B.[2,10]C.[$\frac{1}{2}$,2]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案