14.下列函數(shù)既是奇函數(shù),又在(0,1)上是增函數(shù)的是( 。
A.y=-x3B.y=sinxC.y=log3xD.y=3x+3-x

分析 運用奇偶性的定義和導數(shù)的運用,結(jié)合常見函數(shù)的奇偶性和單調(diào)性,即可得到既是奇函數(shù)又是增函數(shù)的函數(shù).

解答 解:由奇函數(shù)就可以排除C、D選項,由在(0,1)上是增函數(shù)可排除A選項,
故選B

點評 本題考查函數(shù)的奇偶性和單調(diào)性的判斷,注意運用奇偶性和單調(diào)性的定義結(jié)合常見函數(shù)的奇偶性和單調(diào)性,屬于基礎題和易錯題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}$(t是參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程為ρ=4cos(θ+$\frac{π}{4}$).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知A={x|x+1>0},B={x|x2+x-2<0},則A∪B=( 。
A.(-2,+∞)B.(-2,-1)C.(-1,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2sinx+2xcosx,x∈(-2π,2π),則其導函數(shù)f′(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\frac{{{{cos}^2}(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)•sin(π+α)}}$=$\frac{1}{2}$.
(Ⅰ)求tanα的值;
(Ⅱ)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義域為R的偶函數(shù)y=f(x)滿足f(x+1)=f(x-4),且x∈[-$\frac{5}{2}$,0]時,f(x)=-x2,則f(2016)+f($\frac{9}{2}$)的值等于(  )
A.-$\frac{5}{4}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a∈($\frac{π}{2}$,π),sina=$\frac{\sqrt{5}}{5}$.
(Ⅰ)求tan($\frac{π}{4}$+2a)的值;
(Ⅱ)求cos($\frac{5π}{6}$-2a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設等差數(shù)列{an}的前n項和為Sn,已知a2=2,S5=15,若bn=$\frac{1}{{a}_{n+1}^{2}-1}$,則數(shù)列{bn}的前10項和為( 。
A.$\frac{11}{24}$B.$\frac{175}{132}$C.$\frac{175}{264}$D.$\frac{17}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個袋中裝有6個黃球和4個白球(形狀大小均相同),不放回地依次摸出2個球,在第1次摸出黃球的條件下,第2次也摸到黃球的概率為( 。
A.$\frac{3}{5}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{1}{10}$

查看答案和解析>>

同步練習冊答案