4.已知直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}$(t是參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程為ρ=4cos(θ+$\frac{π}{4}$).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.

分析 (1)分別求出直線和曲線的普通方程,根據(jù)點到直線的距離,求出直線l與曲線C的位置關(guān)系;
(2)根據(jù)點到直線的距離求出直線l上的點向圓C引的切線長的最小值即可.

解答 解:(1)直線l方程:y=x+4$\sqrt{2}$,ρ=4cos(θ+$\frac{π}{4}$)=2$\sqrt{2}$cosθ-2$\sqrt{2}$sinθ,
∴ρ2=2$\sqrt{2}$ρcosθ-2$\sqrt{2}$sinθ,
∴圓C的直角坐標方程為x2+y2-2$\sqrt{2}$x+2$\sqrt{2}$y=0,
即${(x-\sqrt{2})}^{2}$+${(y+\sqrt{2})}^{2}$=4,
∴圓心($\sqrt{2}$,-$\sqrt{2}$)到直線l的距離為d=6>2,故直線與圓相離.(5分)
(2)直線l的參數(shù)方程化為普通方程為x-y+4$\sqrt{2}$=0,
則圓心C到直線l的距離為$|\frac{\sqrt{2}+\sqrt{2}+4\sqrt{2}}{\sqrt{2}}|$=6,
∴直線l上的點向圓C引的切線長的最小值為$\sqrt{{6}^{2}{-2}^{2}}$=4$\sqrt{2}$.(10分)

點評 本題考查了參數(shù)方程、極坐標方程轉(zhuǎn)化為普通方程,考查直線和圓的位置關(guān)系,考查切線問題,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,某房子屋檐A點離地面15米.房子上另一點B離地面9米,而且A,B兩點在同一鉛垂線上,在離地面7米的C處看此房子,問水平距離離此房子多遠時A,B的視角(∠ACB)最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,則$\frac{y+2}{x-2}$的取值范圍是(  )
A.[-5,$\frac{5}{3}$]B.[-5,0)∪[$\frac{5}{3}$,+∞)C.(-∞,-5]∪[$\frac{5}{3}$,+∞)D.[-5,0)∪(0,$\frac{5}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)=$\frac{1}{3}$x3+mx2-3m2x+1,m∈R在區(qū)間(-2,3)上是減函數(shù),則實數(shù)m的取值范圍為( 。
A.m≥3B.m≤-2C.m≥2或m≤-3D.m≥3或m≤-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.計算:1-2sin2105°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=a1nx+$\frac{{x}^{2}}{2}$-(a+1)x(a∈R),若函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知a為正的常數(shù),函數(shù)g(x)=|x-a|+$\frac{lnx}{x}$,x∈[1,e],則g(x)的最小值為g(x)min=$\left\{\begin{array}{l}{1-a,0<a≤1}\\{\frac{lna}{a},1<a≤e}\\{a-e+\frac{1}{e},a>e}\end{array}\right.$(e≈2.71828為自然對數(shù)的底數(shù),寫成分段函數(shù)形式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知cos2α=$\frac{1}{3}$,則$\frac{tan2α}{tanα}$的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列函數(shù)既是奇函數(shù),又在(0,1)上是增函數(shù)的是(  )
A.y=-x3B.y=sinxC.y=log3xD.y=3x+3-x

查看答案和解析>>

同步練習冊答案