A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{5}{2}$ |
分析 設(shè)CA=2,由條件及建立的空間直角坐標系,可求出點A,B,B1,C1幾點的坐標,從而得到向量$\overrightarrow{B{C}_{1}}$,$\overrightarrow{A{B}_{1}}$的坐標,由向量夾角余弦的坐標公式即可求出$cos<\overrightarrow{B{C}_{1}},\overrightarrow{A{B}_{1}}>$,從而便得出直線BC1與直線AB1夾角的余弦值.
解答 解:設(shè)CA=2,根據(jù)條件可求以下幾點坐標:
A(2,0,0),B1(0,2,1),B(0,0,1),C1(0,2,0);
∴$\overrightarrow{B{C}_{1}}=(0,2,-1),\overrightarrow{A{B}_{1}}=(-2,2,1)$;
∴cos$<\overrightarrow{B{C}_{1}},\overrightarrow{A{B}_{1}}>$=$\frac{\overrightarrow{B{C}_{1}}•\overrightarrow{A{B}_{1}}}{|\overrightarrow{B{C}_{1}}||\overrightarrow{A{B}_{1}}|}=\frac{3}{\sqrt{5}•3}=\frac{\sqrt{5}}{5}$.
∴直線BC1與直線AB1夾角的余弦值為$\frac{\sqrt{5}}{5}$.
故選:A.
點評 考查利用空間向量解決異面直線所成角問題的方法,能求空間點的坐標,由點的坐標求向量的坐標,向量夾角余弦的坐標公式,清楚兩異面直線的方向向量的夾角和這兩異面直線所成角的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=4 | B. | a=5 | C. | a=6 | D. | a=7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{6}{11}$ | C. | $\frac{6}{13}$ | D. | 0或$\frac{6}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | -5或5 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com