已知集合A={1,2},B={y|y=x+1,x∈A}.
(1)求集合B與A∪B;
(2)寫出A∪B的所有真子集.
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:(1)將A中元素代入B中y=x+1求出y的值,確定出B,求出A與B的并集即可;
(2)找出A與B并集的所有真子集即可.
解答: 解:(1)將x=1代入y=x+1得:y=2;
將x=2代入y=x+1得:y=3,
∴B={2,3},
∵A={1,2},
∴A∪B={1,2,3};
(2)∵A∪B={1,2,3},
∴A∪B的所有真子集有:{1};{2};{3};{1,2};{1,3};{2,3};∅.
點(diǎn)評(píng):此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=8(y+8)與y軸交點(diǎn)為M,動(dòng)點(diǎn)P,Q在拋物線上滑動(dòng),且
MP
MQ
=0
(1)求PQ中點(diǎn)R的軌跡方程W;
(2)點(diǎn)A,B,C,D在W上,A,D關(guān)于y軸對(duì)稱,過(guò)點(diǎn)D作切線l,且BC與l平行,點(diǎn)D到AB,AC的距離為d1,d2,且d1+d2=
2
|AD|,證明:△ABC為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知b2+c2=a2-bc.
(1)求A的大。
(2)如果cosB=
6
3
,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+alnx
(1)若f(x)在x=1處取得極值,求常數(shù)a的值;
(2)若函數(shù)g(x)=f(x)+
2
x
在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,現(xiàn)設(shè)向量
m
=(2sin
A
2
,
3
),向量
n
=(cosA,2cos2
A
4
-1),且
m
n
共線.
(1)求(
m
+
n
)•
n
的值;
(2)若a=
7
,且△ABC的面積為
3
3
2
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,△ABC面積S=
c2-a2-b2
4

(1)求C;
(2)當(dāng)a=1,c=
2
時(shí),求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所描述的算法程序,記輸出的一列a的值依次為a1,a2,…,an,其中n∈N*且n≤2014.
(1)若輸入λ=
2
,寫出全部輸出結(jié)果.
(2)若輸入λ=2,記bn=
1
an-1
}(n∈N*),求bn+1與bn的關(guān)系(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x+θ)(0<θ<π),若y=f(x)f′(x)的圖象關(guān)于x=
π
6
對(duì)稱,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(cosα,tanα)在第三象限,則α是第
 
象限角.

查看答案和解析>>

同步練習(xí)冊(cè)答案