18.曲線$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的長度是(  )
A.B.10πC.$\frac{5π}{3}$D.$\frac{10π}{3}$

分析 運用同角的平方關(guān)系:sin2θ+cos2θ=1,化簡曲線方程,可得圓x2+y2=25內(nèi)的圓心角為π-$\frac{π}{3}$=$\frac{2π}{3}$的弧長,再由弧長公式,計算即可得到所求值.

解答 解:由sin2θ+cos2θ=1,
曲線$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)即為
圓x2+y2=25內(nèi)的圓心角為π-$\frac{π}{3}$=$\frac{2π}{3}$的弧長,
可得所求長度為$\frac{2π}{3}$×5=$\frac{10π}{3}$.
故選:D.

點評 本題考查參數(shù)方程與普通方程的互化,注意運用同角的平方關(guān)系,考查圓的弧長公式的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點S,A,B,C在半徑為$\sqrt{2}$的同一球面上,△ABC是邊長為$\sqrt{3}$的正三角形,若點S到平面ABC的距離為$\frac{1}{2}$,則點S與△ABC中心的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若拋物線y2=8x上一點P到其焦點的距離為8,則點P到其準線的距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x,y均為正實數(shù),則當($\frac{1}{x}$+$\frac{1}{y}$)(4x+y)取得最小值時,$\frac{y}{x}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦點分別為F1,F(xiàn)2,直線y=x-1過橢圓的右焦點F2且與橢圓交于P,Q兩點,若△F1PQ的周長為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)過點M(2,0)的直線l與橢圓C交于不同兩點E,F(xiàn),求$\overrightarrow{ME}$•$\overrightarrow{MF}$取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知{an}為等差數(shù)列,Sn為數(shù)列{an}的前n項和,已知S7=7,S15=75,
(1)求數(shù)列{an}的首項a1及公差為d;
(2)證明:數(shù)列$\left\{{\frac{S_n}{n}}\right\}$為等差數(shù)列并求其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,曲線f(x)=x2和g(x)=2x圍成幾何圖形的面積是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.實數(shù)x,y滿足x2+4|xy|=1,則x2+2y2的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{6}$=1的焦距等于2,則m的值為( 。
A.10B.7C.10或4D.7或5

查看答案和解析>>

同步練習(xí)冊答案