19.點(diǎn)P(ln(2x+2-x-tan$\frac{π}{6}$),cos2)(x∈R)位于坐標(biāo)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由2x+2-x≥2,得2x+2-x-tan$\frac{π}{6}$>1,進(jìn)一步求出ln(2x+2-x-tan$\frac{π}{6}$)>0,再由$\frac{π}{2}<2<π$求出cos2<0,即可求出點(diǎn)P(ln(2x+2-x-tan$\frac{π}{6}$),cos2)(x∈R)位于坐標(biāo)平面的象限.

解答 解:∵2x+2-x≥2,
∴2x+2-x-tan$\frac{π}{6}$≥$2-\frac{\sqrt{3}}{3}$>1,當(dāng)且僅當(dāng)2x=2-x時(shí)取等號,
則ln(2x+2-x-tan$\frac{π}{6}$)>0.
又∵$\frac{π}{2}<2<π$,∴cos2<0.
∴點(diǎn)P(ln(2x+2-x-tan$\frac{π}{6}$),cos2)(x∈R)位于坐標(biāo)平面的第四象限.
故選:D.

點(diǎn)評 本題考查了三角函數(shù)值的符號,考查了對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={1,2,3,4,5},集合B={x∈Z|x2-4x-5<0},則A∩B的元素個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知一次函數(shù)f(x)的圖象關(guān)于直線x-y=0對稱的圖象為C,且f(f(1))=-1,若點(diǎn)$({n,\frac{{{a_{n+1}}}}{a_n}})({n∈{N^*}})$在曲線C上,并有${a_1}=1,\frac{{{a_{n+1}}}}{a_n}-\frac{a_n}{{{a_{n-1}}}}=1({n≥2})$.
(1)求f(x)的解析式及曲線C的方程; 
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)${S_n}=\frac{a_1}{3!}+\frac{a_2}{4!}+\frac{a_3}{5!}+…+\frac{a_n}{{({n+2})!}}$,求$\lim_{n→∞}{S_n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值 cos20°cos40°cos60°cos80°=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={-1,-2,3},N={-2,3,5},則(  )
A.M⊆NB.N⊆MC.M∩N={-2,3}D.M∪N={-1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=x3+x,若當(dāng)$0≤θ≤\frac{π}{2}$時(shí),f(msinθ)+f(sinθ-cos2θ+2)>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-3,+∞)B.(-1,+∞)C.(-∞,-3)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$,g(x)=x-1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)>mg(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:“?n∈N*,使得 n2<2n”,則命題¬p的真假為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知隨機(jī)變量ξ的分布如下:
ξ123
P$\frac{1}{4}$1-$\frac{3}{2}a$2a2
則實(shí)數(shù)a的值為( 。
A.-$\frac{1}{2}$或-$\frac{1}{4}$B.$\frac{1}{2}$或$\frac{1}{4}$C.-$\frac{1}{2}$或$\frac{1}{4}$D.$\frac{1}{2}$或-$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案