15.已知f(x)是R上的奇函數(shù),f(1)=1,且對任意x∈R都有f(x+4)=f(x)+f(2)成立,則f(2016)+f(2017)=1.

分析 求出f(2)=0,可得f(x)是以4為周期的周期函數(shù),利用函數(shù)的周期性和奇偶性進行轉化求解,即可得出結論.:

解答 解:∵f(x+4)=f(x)+f(2)中,
∴令x=-2,得f(2)=f(-2)+f(2),即f(-2)=0.
又f(x)是R上的奇函數(shù),故f(-2)=-f(2)=0.f(0)=0,
∴f(2)=0,
故f(x+4)=f(x),
∴f(x)是以4為周期的周期函數(shù),
從而f(2017)=f(4×504+1)=f(1)=1.
f(2016)=f(4×504)=f(0)=0.
故f(2016)+f(2017)=0+1=1,
故答案為:1.

點評 本題主要考查函數(shù)值的計算以及奇函數(shù)、周期函數(shù)的應用,確定f(x)是以4為周期的周期函數(shù)是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{\sqrt{3-mx}}{m-2}$(m≠2)在區(qū)間(0,1)上是減函數(shù),則實數(shù)m的取值范圍是( 。
A.(0,2)B.(2,3)C.(-∞,0)∪(2,3)D.(-∞,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個焦點與拋物線y2=8x的焦點重合,點$P(2,\sqrt{2})$在C上.
(1)求橢圓C的方程;
(2)若橢圓C的一條弦被M(2,1)點平分,求這條弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列函數(shù)是增函數(shù)的是(  )
A.y=-3x-1B.y=x2+1C.y=($\frac{1}{2}$)xD.y=log2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若Sn=cos$\frac{π}{8}$+cos$\frac{2π}{8}$+…+cos$\frac{nπ}{8}$(n∈N+),則在S1,S2,…,S2015中,正數(shù)的個數(shù)是( 。
A.882B.756C.750D.378

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)在=R上總有導數(shù)f(x),定義F(x)=exf(x),G(x)=$\frac{f(x)}{{e}^{x}}$,x∈R(e=2.71828是自然對數(shù)的底數(shù))
(1)若f(x)>0,且f(x)+f′(x)<0,x∈R,試分別判斷函數(shù)F(x)和G(x)的單調(diào)性;
(2)若f(x)=x2-3x+3,x∈R
①當x∈[-2,t],(t>1)時,求函數(shù)F'(x)的最小值;
②當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為保值區(qū)間.設g(x)=F(x)+(x-2)ex,問函數(shù)g(x)在(1,+∞)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合M={x|x2-2x-3=0},N={x|-2<x≤4},M∩N=(  )
A.{x|-1<x≤3}B.{x|-1<x≤4}C.{-3,1}D.{-1,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線y=a分別與曲線y=2x+5,y=x+lnx交于A,B兩點,則|AB|的最小值為(  )
A.3B.4C.$\frac{{3\sqrt{2}}}{2}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{{x}^{2}}{2}$-alnx(a>0)在[1,2]上為單調(diào)函數(shù),則a的取值范圍為( 。
A.(-∞,1]B.(-∞,1)∪(4,+∞)C.(0,1)∪(4,+∞)D.(0,1]∪[4,+∞)

查看答案和解析>>

同步練習冊答案