10.已知直線m、n、l與平面α,β,給出下列六個(gè)命題:
①若m∥α,n⊥α,則n⊥m;
②若m⊥α,m∥β,則α⊥β;
③若l∥α,m∥β,α∥β,則l∥m;
④若m?α,l∩α=A,點(diǎn)A∉m,則l與m不共面;
⑤若m、l是異面直線,l∥α,m∥α,且n⊥l,n⊥m,則n⊥α;
⑥l?α,m?α,l∩m=點(diǎn)A,l∥β,m∥β,則α∥β.
其中假命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 利用空間線面位置關(guān)系的性質(zhì)和判定定理進(jìn)行分析判斷,必要時(shí)作出草圖輔助證明.

解答 解:①若m∥α,則存在b?α,使得b∥m,
∵n⊥α,∴n⊥b,∴n⊥m.故①正確;
②若m∥β,則存在直線b?β,使得m∥b,
∵m⊥α,∴b⊥α,又b?β,∴α⊥β.故②正確;
③由于平行關(guān)系在線面之間不具有傳遞性,故③錯(cuò)誤;
④∵m?α,l∩α=A,點(diǎn)A∉m,∴m與l沒有公共點(diǎn),即m與l平行或異面,
若m與l平行,則l∥α,與l∩α=A矛盾,故m與l為異面直線,故④正確;
⑤在平面α內(nèi)任意一點(diǎn)O作m′∥m,l′∥l,則m′,l′為相交直線,
∵l∥α,m∥α,∴m′?α,l′?α.
∵n⊥l,n⊥m,∴n⊥m′,n⊥l′,
∴n⊥α,故⑤正確.
⑥由面面平行的判定定理可知⑥正確.
故選:B.

點(diǎn)評 本題考查了空間線面位置關(guān)系的判定與性質(zhì),熟練掌握判定定理和性質(zhì),結(jié)合幾何圖形觀察是判斷的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=ex的導(dǎo)函數(shù)是( 。
A.y′=xB.y′=e•xC.y′=exD.y′=x•ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.$\frac{sin40°+cos40°}{\sqrt{1+cos10°}}$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.①若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$;
②($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$$•\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$;
③若向量$\overrightarrow{AB}$的起點(diǎn)為A(-2,4),終點(diǎn)為B(2,1),則$\overrightarrow{BA}$與x軸正方向所夾角的余弦值是$\frac{4}{5}$;
④若向量$\overrightarrow{a}$=(m,4),且|$\overrightarrow{a}$|=$\sqrt{23}$,則m=$\sqrt{7}$
其中不正確的序號有③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.親情教育越來越受到重視.在公益機(jī)構(gòu)的這類活動(dòng)中,有一個(gè)環(huán)節(jié)要求父(母)與子(女)各自從1,2,3,4,5中隨機(jī)挑選一個(gè)數(shù)以觀測兩代人之間的默契程度.若所選數(shù)據(jù)之差的絕對值等于1,則稱為“基本默契”,結(jié)果為“基本默契”的概率為$\frac{8}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-mlnx,g(x)=x2-(m+1)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥1時(shí),討論函數(shù)f(x)與g(x)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.據(jù)氣象部門預(yù)報(bào),在距離某碼頭正西方向400km 處的熱帶風(fēng)暴中心正以20km/h 的速度向東北方向移動(dòng),距風(fēng)暴中心300km 以內(nèi)的地區(qū)為危險(xiǎn)區(qū),則該碼頭處于危險(xiǎn)區(qū)內(nèi)的時(shí)間為(  )
A.9 hB.10 hC.11 hD.12 h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC,a=b,則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.拋物線x2=4y的焦點(diǎn)F的坐標(biāo)為(0,1),過F的直線與拋物線交于A,B兩點(diǎn),若線段AB的中點(diǎn)M的縱坐標(biāo)為4,則線段AB的長度為10.

查看答案和解析>>

同步練習(xí)冊答案