19.已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC,a=b,則cosB=$\frac{1}{4}$.

分析 由正弦定理化簡(jiǎn)已知的式子,結(jié)合條件利用余弦定理求出cosB的值.

解答 解:∵sin2B=2sinAsinC,在△ABC中,由正弦定理得b2=2ac,
又a=b,則b=2c,即c=$\frac{1}{2}$b,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{^{2}+{\frac{1}{4}b}^{2}-^{2}}{2b×\frac{1}{2}b}$=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查正弦定理和余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax2-(a+2)x+1.
(1)若f(x)在區(qū)間(-2,-1)上恰有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(2x)有兩個(gè)零點(diǎn),且一個(gè)零點(diǎn)大于1,一個(gè)零點(diǎn)小于1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知直線m、n、l與平面α,β,給出下列六個(gè)命題:
①若m∥α,n⊥α,則n⊥m;
②若m⊥α,m∥β,則α⊥β;
③若l∥α,m∥β,α∥β,則l∥m;
④若m?α,l∩α=A,點(diǎn)A∉m,則l與m不共面;
⑤若m、l是異面直線,l∥α,m∥α,且n⊥l,n⊥m,則n⊥α;
⑥l?α,m?α,l∩m=點(diǎn)A,l∥β,m∥β,則α∥β.
其中假命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)當(dāng)a=-1時(shí),求f(x)的極值;
(2)若f(x)是區(qū)間$(\frac{1}{2},1)$內(nèi)的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)的定義域?yàn)镽,其導(dǎo)函數(shù)f′(x)的圖象如圖,則f(x)的極值點(diǎn)有( 。
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.為測(cè)得河對(duì)岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10m到位置D,測(cè)得∠BDC=45°,則塔AB的高是( 。
A.10 mB.10$\sqrt{2}$ mC.10$\sqrt{3}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知拋物線y2=ax(a≠0)的準(zhǔn)線方程為x=-3,△ABC為等邊三角形,且其頂點(diǎn)在此拋物線上,O是坐標(biāo)原點(diǎn),則△ABC的邊長(zhǎng)為24$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線C:y2=2px(p>0),焦點(diǎn)F,O為坐標(biāo)原點(diǎn),直線AB(不垂直x軸)過(guò)點(diǎn)F且與拋物線C交于A,B兩點(diǎn),直線OA與OB的斜率之積為-p.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若M為線段AB的中點(diǎn),射線OM交拋物線C于點(diǎn)D,求證:$\frac{{|{OD}|}}{{|{OM}|}}>2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(Ⅰ)若t∈R,t≠0時(shí),求復(fù)數(shù)z=$\frac{1}{t}$+ti的模的取值范圍;
(Ⅱ)在復(fù)數(shù)范圍內(nèi)解關(guān)于z方程|z|2+(z+$\overline z$)i=$\frac{3-i}{2+i}$(i為虛數(shù)單位).

查看答案和解析>>

同步練習(xí)冊(cè)答案