7.若關(guān)于x的不等式lnx>ax-1的解集為{x|x>2},則不等式lnx<1-$\frac{a}{x}$的解集為(  )
A.{x|x>2}B.{x|0<x<2}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

分析 根據(jù)兩個(gè)不等式的關(guān)系,只要令$\frac{1}{t}$=x,則關(guān)于t的不等式ln$\frac{1}{t}$>$\frac{a}{t}$-1,得到$\frac{1}{t}$的范圍,即求得x的范圍.

解答 解:令$\frac{1}{t}$=x,則關(guān)于t的不等式ln$\frac{1}{t}$>$\frac{a}{t}$-1
即lnt<1-$\frac{a}{t}$的解集為{$\frac{1}{t}$|$\frac{1}{t}$>2},
所以所以{t|0<t<$\frac{1}{2}$},
所以不等式lnx<1-$\frac{a}{x}$的解集為{x|0<x<$\frac{1}{2}$};
故選D.

點(diǎn)評(píng) 本題考查了抽象不等式的解法;本題的關(guān)鍵是發(fā)現(xiàn)兩個(gè)不等式的未知數(shù)關(guān)系是倒數(shù)關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸出的$S=\frac{2016}{4033}$,則判斷框內(nèi)應(yīng)填入( 。
A.i>2014B.i>2014C.i>2015D.i>2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)對(duì)一切x,y∈R都有f(x+y)=f(x)+f(y),若f(-3)=a,用a表示f(12)=-4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3.
(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出由函數(shù)y=3sin$\frac{x}{2}$通過(guò)怎樣的變換可以得到函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3的圖象并求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x∈[$\frac{π}{3}$,$\frac{4π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若其面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{16}$,則cos A=$\frac{4\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.△ABC中,BC邊上的高所在直線方程為x-2y+1=0,∠A的外角平分線所在直線方程為x+y+4=0,若B點(diǎn)的坐標(biāo)為(4,-2),求A點(diǎn)和C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知P為△ABC內(nèi)一點(diǎn),且5$\overrightarrow{AP}$-2$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{0}$,則△PAC的面積與△ABC的面積之比等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,ab=60$\sqrt{3}$,sinB=sinC,面積為15$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若tanα=$\frac{4}{3}$,則cos2α+sin2α=$\frac{33}{25}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案