如圖:△ABC中,AB=BC=4,∠ABC=30°,AD⊥BC,則
AD
AC
=
 

考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:由AD⊥BC可得
AD
DC
=0,
AD
AC
=
AD
•(
AD
+
DC
)=
AD
2
.再根據(jù)AD=AB•sinB,可得
AD
2
的值.
解答: 解:由AD⊥BC可得
AD
DC
,
AD
DC
=0.
AD
AC
=
AD
•(
AD
+
DC
)=
AD
2

再根據(jù)AD=AB•sinB=4×
1
2
=2,可得
AD
2
=4,
故答案為:4.
點評:本題主要考查兩個向量的數(shù)量積的運算,兩個向量垂直的性質(zhì),直角三角形中的邊角關系,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若向量
a
=(2,-1),
b
=(k,1)
,若
a
b
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積等于( 。ヽm3
A、18B、21C、24D、28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x、y滿足xy=x+y+3.
(1)求xy的范圍;
(2)求x+y的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-2x+4y-4=0,P為圓C外且在直線y-x-3=0上的點,過點P作圓C的兩切線,則切線長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a>0,b>0,A是a,b的等差中項,G是a,b的正的等比中項,A,G大小關系是( 。
A、A≥GB、A≤G
C、A=GD、A,G大小不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用“輾轉(zhuǎn)相除法”求得3459和3357的最大公約數(shù)是( 。
A、3B、9C、17D、51

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點數(shù)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=25的內(nèi)部的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={4,5,6,8},B={5,7,8,9},則集合A∩B是( 。
A、{4,5,6}
B、{5,6,8}
C、{9,8}
D、{5,8}

查看答案和解析>>

同步練習冊答案