18.對于常數(shù)k定義fk(x)=$\left\{\begin{array}{l}f(x),f(x)≥k\\ k,f(x)<k\end{array}$,若f(x)=x-lnx,則f3(f2(e))=( 。
A.3B.e+1C.eD.e-1

分析 利用分段函數(shù)的解析式,對所求的表達式由里及外逐步求解即可.

解答 解:f(x)=x-lnx,f(e)=e-lne=e-1<k=2,
∴f2(e)=2,
又∵f(2)=2-ln2<k=3,
∴f3(f2(e))=f3(2)=3.
故選:A.

點評 本題考查分段函數(shù)的應用,函數(shù)的值的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示的程序框圖中,如輸入m=4,t=3,則輸出y=( 。
A.61B.62C.183D.184

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知$cos({\frac{70π}{3}-α})=-\frac{1}{3}$,則$cos({\frac{70π}{3}+2α})$=$-\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設P為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上任一點,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,短軸的兩個頂點與右焦點的連線構成等邊三角形.
(I)求橢圓的離心率;
(Ⅱ)直線l:y=kx+$\frac{2}$與圓:x2+y2=$\frac{^{2}}{5}$相切,且與橢圓交于P、Q兩點,當△OPQ的面積等于$\sqrt{7}$,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某重點中學100位學生在市統(tǒng)考中的理科綜合分數(shù),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求理科綜合分數(shù)的眾數(shù)和中位數(shù);
(Ⅲ)在理科綜合分數(shù)為[220,240),[240,260),[260,280),[280,300]的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數(shù)在[220,240)的學生中應抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.從1,2,3,4,5這五個數(shù)字中任取三個不同的數(shù)字,求下列事件的概率.
(1)A={三個數(shù)字中不含1和5}
(2)B={三個數(shù)字中含1或5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=a(3x-1)+(3a2+1)lnx,a∈R,
(Ⅰ)當a=1時,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在區(qū)間[$\frac{1}{3}$,1]上有且只有1個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個單位后,得到f(x)的圖象,則( 。
A.f(x)=-sin 2xB.f(x)的圖象關于x=-$\frac{π}{3}$對稱
C.f($\frac{7π}{3}$)=$\frac{1}{2}$D.f(x)的圖象關于(1,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設p:|4x-3|≤1;q:x2-(2a+1)x+a2+a≤0,若p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習冊答案