7.將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到f(x)的圖象,則( 。
A.f(x)=-sin 2xB.f(x)的圖象關(guān)于x=-$\frac{π}{3}$對(duì)稱
C.f($\frac{7π}{3}$)=$\frac{1}{2}$D.f(x)的圖象關(guān)于(1,0)對(duì)稱

分析 利用誘導(dǎo)公式,y=Asin(ωx+φ)的圖象變換規(guī)律,可得所得圖象對(duì)應(yīng)的函數(shù)解析式,再利用正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),得出結(jié)論.

解答 解:將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,
得到f(x)=cos[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]=cos(2x+$\frac{2π}{3}$)=-sin(2x+$\frac{π}{6}$)的圖象,故排除A;
當(dāng)x=-$\frac{π}{3}$時(shí),f(x)=1,為函數(shù)的最大值,故f(x)的圖象關(guān)于x=-$\frac{π}{3}$對(duì)稱,故B正確;
由于f($\frac{7π}{3}$)=-2sin$\frac{29π}{6}$=-2sin$\frac{5π}{6}$=-1,故排除C;
當(dāng)x=1時(shí),f(x)=-sin(2+$\frac{π}{6}$)≠0,故D錯(cuò)誤,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式,y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓C經(jīng)過(guò)兩個(gè)點(diǎn)A(2,-3)和B(-2,-5),且圓心在直線x-2y-3=0上.
(1)求此圓C的方程;
(2)直線l:x+my+m+2=0(m為常數(shù))與圓C相交于M,N,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.對(duì)于常數(shù)k定義fk(x)=$\left\{\begin{array}{l}f(x),f(x)≥k\\ k,f(x)<k\end{array}$,若f(x)=x-lnx,則f3(f2(e))=( 。
A.3B.e+1C.eD.e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知實(shí)數(shù)數(shù)列{an}滿足:a1=3,an=$\frac{n+2}{3n}$(an-1+2),n≥2,證明:當(dāng)n≥2時(shí),{an}是單調(diào)減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知i是虛數(shù)單位,則(1+i)2的共軛復(fù)數(shù)是( 。
A.-2iB.-2+iC.2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2C-3cos(A+B)=1.
(1)求C;
(2)若c=$\sqrt{7}$,b=3a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在平面直角坐標(biāo)系中,點(diǎn)$A(-\frac{1}{2},0)$,$B(\frac{3}{2},0)$,銳角α的終邊與單位圓O交于點(diǎn)P.
(Ⅰ)當(dāng)$\overrightarrow{AP}•\overrightarrow{BP}=-\frac{1}{4}$時(shí),求α的值;
(Ⅱ)在軸上是否存在定點(diǎn)M,使得$|\overrightarrow{AP}|=\frac{1}{2}|\overrightarrow{MP}|$恒成立?若存在,求出點(diǎn)M的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知點(diǎn)P為不等式組$\left\{\begin{array}{l}x-2y+1≥0\\ x≤2\\ x+y-1≥0\end{array}\right.$所表示的平面區(qū)域內(nèi)的一點(diǎn),點(diǎn)Q是圓M:(x+1)2+y2=1上的一個(gè)動(dòng)點(diǎn),則|PQ|的最大值是( 。
A.$\frac{{3\sqrt{5}+2}}{2}$B.$\frac{{2\sqrt{5}+3}}{3}$C.$\frac{{2\sqrt{5}}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-2,0),(2,0),橢圓上一點(diǎn)P到兩焦點(diǎn)的距離之和等于6,求橢圓的方程;
(2)橢圓的焦點(diǎn)為F1(0,-5),F(xiàn)2(0,5),點(diǎn)P(3,4)是橢圓上的一個(gè)點(diǎn),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案