如圖,三棱柱ABC-A1B1C1的側棱AA1⊥平面ABC,△ABC為正三角形,且側面AA1C1C是邊長為2的正方形,E是的中點,F在棱CC1上。

(1)當CF時,求多面體ABCFA1的體積;
(2)當點F使得A1F+BF最小時,判斷直線AE與A1F是否垂直,并證明的結論。

(1) ;(2) ,證明詳見解析

解析試題分析:(1)此多面體是以為底面,以B為頂點的四棱錐,而且,因為△ABC為正三角形,所以△ABC的AC邊上的高即為此四棱錐的高,底面是直角梯形,所以利用錐體體積公式即可求得其體積。(2)把立體圖展成平面圖后,兩點之間直線最短,連接與點F,此時A1F+BF最小,分析可知F為的中點。過點,則的中點,此時只需判斷AE與EG是否垂直即可。求出三角形AEG三邊長即可得證,詳見解析。
試題解析:解:(Ⅰ)
由已知可得的高為且等于四棱錐的高.
,即多面體的體積為        5分
(Ⅱ)將側面展開到側面得到矩形,連結,交于點,此時點使得最小.此時平行且等于的一半,的中點.   7分

過點,則的中點,.
過點,則
于是在中,
中,
中,, ∴              13分
考點:幾何體體積,線線垂直。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示是一幾何體的直觀圖、正(主)視圖、側(左)視圖、俯視圖.

(1)若FPD的中點,求證:AF⊥面PCD;
(2)求幾何體BECAPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體中,為線段的中點,.

(Ⅰ)證明:⊥平面;
(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖在長方體中,,,,點的中點,點的中點.

(1)求長方體的體積;
(2)若,,,求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知半徑為的球內有一個內接正方體(即正方體的頂點都在球面上).
(1)求此球的體積;
(2)求此球的內接正方體的體積;
(3)求此球的表面積與其內接正方體的全面積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求異面直線所成角的余弦值;
(2)求二面角的正弦值;
(3)求此幾何體的體積的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長為的菱形,, 底面,,的中點,的中點.

(Ⅰ)求四棱錐的體積;
(Ⅱ)證明:直線平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形均為菱形,設相交于點,若,且.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐的底面為直角梯形,,底面,且,的中點。

(Ⅰ)證明:面;
(Ⅱ)求所成的角;
(Ⅲ)求面與面所成二面角的大小。

查看答案和解析>>

同步練習冊答案