如圖,在矩形ABCD中,AB=2,BC=
3
,E是CD的中點(diǎn),那么
AE
DC
=( 。
A、4
B、2
C、
3
D、1
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量的三角形法則和向量的平方即為模的平方,以及向量垂直的條件即數(shù)量積為0,計(jì)算即可得到.
解答: 解:
AE
DC
=(
AD
+
DE
)•
DC

=
AD
DC
+
DE
DC

=
AD
AB
+
1
2
DC
2

=0+
1
2
AB
2
=
1
2
×4
=2.
故選B.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的定義和性質(zhì),考查向量的垂直的條件和向量的平方與模的平方的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
(其中e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)g(x)=x2f(x)-mx,其中m∈R,求g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的漸近線方程為2x±y=0,兩頂點(diǎn)間的距離為4,則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,{bn}為等比數(shù)列,且滿足:a1000+a1013=π,b1b14=-2,則tan
a1+a2012
1-b7b8
=(  )
A、1
B、-1
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若程序框圖如圖所示,視x為自變量,y為函數(shù)值,可得函數(shù)y=f(x)的解析式,那么函數(shù)f(x)-4在x∈R上的零點(diǎn)個(gè)數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a4=7,a5=b2,且存在常數(shù)a,β使得對(duì)每一個(gè)正數(shù)n都有an=1ogabn+β,則a+β=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個(gè)幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積和體積分別為(  ) 
A、42π,28π
B、28π,42π
C、24π,28π
D、82π,24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y-5≤0
x-2y+1≤0
x-1≥0
,則z=x2+y2-1的最大值為( 。
A、12B、14C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
|x-2|-1
log2(x-1)
的定義域?yàn)?div id="l9pbh7z" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案