【題目】某校為選拔參加“央視猜燈謎大賽”的隊(duì)員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識(shí)測試成績不小于160分的學(xué)生進(jìn)入第二階段比賽.現(xiàn)有200名學(xué)生參加知識(shí)測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(Ⅰ)估算這200名學(xué)生測試成績的中位數(shù),并求進(jìn)入第二階段比賽的學(xué)生人數(shù);
(Ⅱ)將進(jìn)入第二階段的學(xué)生分成若干隊(duì)進(jìn)行比賽.現(xiàn)甲、乙兩隊(duì)在比賽中均已獲得120分,進(jìn)入最后搶答階段.搶答規(guī)則:搶到的隊(duì)每次需猜3條謎語,猜對(duì)1條得20分,猜錯(cuò)1條扣20分.根據(jù)經(jīng)驗(yàn),甲隊(duì)猜對(duì)每條謎語的概率均為 ,乙隊(duì)猜對(duì)前兩條的概率均為 ,猜對(duì)第3條的概率為 .若這兩隊(duì)搶到答題的機(jī)會(huì)均等,您做為場外觀眾想支持這兩隊(duì)中的優(yōu)勝隊(duì),會(huì)把支持票投給哪隊(duì)?
【答案】解:(Ⅰ)設(shè)測試成績的中位數(shù)為x,由頻率分布直方圖得,
(0.0015+0.019)×20+(x﹣140)×0.025=0.5,
解得:x=143.6.
∴測試成績中位數(shù)為143.6.
進(jìn)入第二階段的學(xué)生人數(shù)為200×(0.003+0.0015)×20=18人.
(Ⅱ)設(shè)最后搶答階段甲、乙兩隊(duì)猜對(duì)燈謎的條數(shù)分別為ξ、η,
則ξ~B(3, ),
∴E(ξ)= .
∴最后搶答階段甲隊(duì)得分的期望為[ ]×20=30,
∵P(η=0)= ,
P(η=1)= ,
P(η=2)= ,
P(η=3)= ,
∴Eη= .
∴最后搶答階段乙隊(duì)得分的期望為[ ]×20=24.
∴120+30>120+24,
∴支持票投給甲隊(duì)
【解析】(Ⅰ)設(shè)測試成績的中位數(shù)為x,由頻率分布直方圖中x兩側(cè)的矩形的面積相等列式求得x值,則中位數(shù)可求,再由200×(0.003+0.0015)×20求得進(jìn)入第二階段的學(xué)生人數(shù);(Ⅱ)設(shè)最后搶答階段甲、乙兩隊(duì)猜對(duì)燈謎的條數(shù)分別為ξ、η,則ξ服從B(3, )分布,由此求得Eξ,進(jìn)一步求得最后搶答階段甲隊(duì)得分的期望,然后求出Eη,再求出最后搶答階段乙隊(duì)得分的期望,比較期望后得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞市攝影協(xié)會(huì)準(zhǔn)備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢(mèng)人”攝影圖片展.通過平常人的鏡頭記錄國強(qiáng)民富的幸福生活,向祖國母親的生日獻(xiàn)禮,攝影協(xié)會(huì)收到了來自社會(huì)各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如圖:
(1)求頻率分布直方圖中的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會(huì)按照分層抽樣的方法,計(jì)劃從這100件照片中抽出20個(gè)最佳作品,并邀請(qǐng)相應(yīng)作者參加“講述照片背后的故事”座談會(huì).
①在答題卡上的統(tǒng)計(jì)表中填出每組相應(yīng)抽取的人數(shù):
年齡 | |||||
人數(shù) |
②若從年齡在的作者中選出2人把這些圖片和故事整理成冊(cè),求這2人至少有一人的年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若都是從集合中任取的一個(gè)數(shù),求函數(shù)有零點(diǎn)的概率;
(2)若都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).
(1)求實(shí)數(shù)的值并判斷函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無限接近圓的面積,進(jìn)而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:
方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;
方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.
(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;
(2)從該銷售公司隨機(jī)選取一名推銷員,對(duì)他(或她)過去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:
月銷售產(chǎn)品件數(shù) | 300 | 400 | 500 | 600 | 700 |
次數(shù) | 2 | 4 | 9 | 5 | 4 |
把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩奶粉廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩奶粉廠生產(chǎn)的產(chǎn)品中分別抽取16件和5件,測量產(chǎn)品中微量元素的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
170 | 178 | 166 | 176 | 180 | |
74 | 80 | 77 | 76 | 81 |
(1)已知甲廠生產(chǎn)的產(chǎn)品共有96件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素滿足且時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com