(1)已知sinα+cosα=
4
5
,0<α<π,求sinα-cosα;
(2)已知tanα=2,求
2sinα-cosα
sinα+3cosα
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:綜合題,三角函數(shù)的求值
分析:(1)先求出2sinαcosα=-
9
25
,即可求出sinα-cosα;
(2)利用商數(shù)關(guān)系,即可求
2sinα-cosα
sinα+3cosα
解答: 解:(1)∵sinα+cosα=
4
5
,
∴(sinα+cosα)2=
16
25

∴2sinαcosα=-
9
25

∴(sinα-cosα)2=1-2sinαcosα=
34
25

又∵0<α<π且2sinαcosα=-
9
25

π
2
<α<π,∴sinα-cosα=-
34
5

(2)∵tanα=2,∴
2sinα-cosα
sinα+3cosα
=
2tanα-1
tanα+3
=
3
5
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖中,當(dāng)x=1時(shí),輸出的y的值是(  )
A、2B、1C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={4,5,6},N={3,5,7},則M∪N=( 。
A、{4,6}
B、{5}
C、{3,4,5,6,7}
D、{3,4,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集A={x|x2-3x+2=0},B={x|x2-ax+a-1=0}若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(wx+ϕ)(A>0,W>0,|ϕ|≤
π
2
)的圖象過點(diǎn)P(
π
12
,0),圖象上與點(diǎn)P最近的一個(gè)最高點(diǎn)是Q(
π
3
,5).
(1)求f(x)的解析式.
(2)在[
8
3
π,3π]上是否存在f(x)的對(duì)稱軸,如果存在,求出其對(duì)稱軸方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cos(α-
β
2
)=-
1
9
,sin(
α
2
-β)=
2
3
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
值.
(2)計(jì)算tan70°cos10°(
3
tan20°-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(-1,1)上的函數(shù)f(x)是奇函數(shù),且在(-1,1)上單調(diào)遞減,求滿足條件f(1-a)+f(1-a2)<0的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2)和向量
a
=(-3,4),求點(diǎn)B的坐標(biāo),使得向量AB∥
a
,且|AB|等于|
a
|的2倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商品每件成本9元,售價(jià)為30元,每星期賣出144件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值x(單位:元,0≤x≤30)的平方成正比.已知商品單價(jià)降低2元時(shí),一星期多賣出8件.
(Ⅰ)將一個(gè)星期的商品銷售利潤(rùn)表示成x的函數(shù);
(Ⅱ)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案