【題目】計(jì)算
(1)(lg2)2+lg2lg50+lg25;
(2)(2 ) +0.1﹣2+( ) +2π0 .
【答案】
(1)解:(lg2)2+lg2lg50+lg25
=(lg2)2+lg2(1+lg5)+2lg5
=(lg2)2+lg2+lg2lg5+2lg5
=lg2(lg2+lg5)+lg2+2lg5
=lg2+lg2+2lg5
=2(lg2+lg5)
=2
(2)解:(2 ) +0.1﹣2+( ) +2π0
=[ ] +(10﹣1)﹣2+(3﹣3) +2
= +100+5
=
【解析】(1)利用對數(shù)性質(zhì)、運(yùn)算法則求解.(2)利用指數(shù)性質(zhì)、運(yùn)算法則求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解對數(shù)的運(yùn)算性質(zhì)的相關(guān)知識,掌握①加法:②減法:③數(shù)乘:④⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是( )
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.某城市機(jī)動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油
D.甲車以80千米/小時的速度行駛1小時,消耗10升汽油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市每年中考都要舉行實(shí)驗(yàn)操作考試和體能測試,初三(1)班共有30名學(xué)生,如圖表格為該班學(xué)生的這兩項(xiàng)成績,表中實(shí)驗(yàn)操作考試和體能測試都為優(yōu)秀的學(xué)生人數(shù)為6人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這班30人中隨機(jī)抽取一個,實(shí)驗(yàn)操作成績合格,且體能測試成績合格或合格以上的概率是.
實(shí)驗(yàn)操作 | |||||
不合格 | 合格 | 良好 | 優(yōu)秀 | ||
體能測試 | 不合格 | 0 | 1 | 1 | 1 |
合格 | 0 | 2 | 1 | ||
良好 | 1 | 2 | 4 | ||
優(yōu)秀 | 1 | 1 | 3 | 6 |
(Ⅰ)試確定, 的值;
(Ⅱ)從30人中任意抽取3人,設(shè)實(shí)驗(yàn)操作考試和體能測試成績都是良好或優(yōu)秀的學(xué)生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測量觀光塔的高度(單位:米),如圖所示,垂直放置的標(biāo)桿的高度米,已知, .
(1)該班同學(xué)測得一組數(shù)據(jù): ,請據(jù)此算出的值;
(2)該班同學(xué)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離(單位:米),使與的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),⊙上有兩點(diǎn),滿足關(guān)于直線軸對稱.
(1)求的值;
(2)若,求線段的長及其中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個試題中隨機(jī)挑選出4個進(jìn)行作答,至少答對3個才能通過初試.已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.
(Ⅰ)求甲通過自主招生初試的概率;
(Ⅱ)試通過概率計(jì)算,分析甲、乙兩人誰通過自主招生初試的可能性更大;
(Ⅲ)記甲答對試題的個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,求曲線在處的切線方程;
(Ⅱ)若對任意, , 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),
(1)求實(shí)數(shù)a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R.
(1)若函數(shù)y=f(x)的圖象與x軸無交點(diǎn),求a的取值范圍;
(2)若函數(shù)y=f(x)在[﹣1,1]上存在零點(diǎn),求a的取值范圍;
(3)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com