A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
分析 利用正弦定理,余弦定理化簡已知得3cosC=$\sqrt{3}$sinC,可求cosC=$\frac{1}{2}$,由余弦定理可得c${\;}^{2}=^{2}-2\sqrt{3}b+12$=(b-$\sqrt{3}$)2+9,由b∈[1,3],即可得解c的最小值.
解答 解:由$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,
可得:$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}=\frac{\sqrt{3}}{3}sinC$,
即:3cosC=$\sqrt{3}$sinC,可得:tanC=$\sqrt{3}$,
故:cosC=$\frac{1}{2}$,
所以:c${\;}^{2}=^{2}-2\sqrt{3}b+12$=(b-$\sqrt{3}$)2+9,
因?yàn)椋篵∈[1,3],
所以:當(dāng)b=$\sqrt{3}$時(shí),c取得最小值3.
點(diǎn)評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,二次函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 無法確定 | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1 | B. | f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$ | ||
C. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=x,g(x)=$\sqrt{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{23}{3}$ | B. | -$\frac{7}{2}$ | C. | -$\frac{23}{3}$ | D. | -8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com