已知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對m∈R,直線l與圓C總有兩個不同交點;
(2)若圓C與直線l相交于A,B兩點,求弦AB的中點M的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知與⊙O相切,為切點,過點的割線交圓于、兩點,弦∥,、相交于點,為上一點,且.
(1)求證:;
(2)若,,,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓:,直線經(jīng)過點,
(1)求以線段為直徑的圓的方程;
(2)若直線與圓相交于,兩點,且為等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點,圓:,過點的動直線與圓交于兩點,線段的中點為,為坐標(biāo)原點.
(1)求的軌跡方程;
(2)當(dāng)時,求的方程及的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在圓上任取一點,過點作軸的垂線段,為垂足.設(shè)為線段的中點.
(1)當(dāng)點在圓上運動時,求點的軌跡的方程;
(2)若圓在點處的切線與軸交于點,試判斷直線與軌跡的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C0:(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a.點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最小;
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com