16.若圓C與圓D:(x+2)2+(y-6)2=1關(guān)于直線l:x-y+5=0對(duì)稱,則圓C的方程為( 。
A.(x+2)2+(y-6)2=1B.(x-6)2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x+1)2+(y+3)2=1

分析 設(shè)圓心(-2,6)關(guān)于直線x-y+5=0對(duì)稱的點(diǎn)的坐標(biāo)為(m,n),利用垂直以及中點(diǎn)在軸上,求得m,n的值,可得對(duì)稱圓的方程.

解答 解:設(shè)圓心(-2,6)關(guān)于直線x-y+5=0對(duì)稱的點(diǎn)的坐標(biāo)為(m,n),
則由$\left\{\begin{array}{l}{\frac{n-6}{m+2}•1=-1}\\{\frac{m-2}{2}-\frac{n+6}{2}+5=0}\end{array}\right.$求得m=1,n=3,故對(duì)稱圓的圓心為(1,3),對(duì)稱圓的半徑和原來的圓一樣,
故對(duì)稱圓的方程為(x-1)2+(y-3)2=1,
故選C.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,求一個(gè)圓關(guān)于直線的對(duì)稱圓的方程的方法,關(guān)鍵是求出圓心關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin2x+2$\sqrt{3}$sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[0,\frac{2π}{3}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓(x+1)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為( 。
A.內(nèi)切B.外切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=lg$\frac{{2}^{x}}{{2}^{x}+1}$,若對(duì)任意實(shí)數(shù)t∈[$\frac{1}{2}$,2],都有f(t+a)-f(t-1)≥0恒成立,則實(shí)數(shù)a的取值范圍[0,+∞)∪(-∞,-3]∪{-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點(diǎn)P在圓C1:x2+y2-8x-4y+11=0上,點(diǎn)Q在C2:x2+y2+4x+2y+1=0上,則|PQ|的最小值是3$\sqrt{5}$-3-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.指數(shù)函數(shù)y=ax、y=bx、y=cx、y=dx在同一坐標(biāo)系中的圖象如圖所示,則a,b,c,d與1的大小關(guān)系為(  )
A.0<a<b<1<c<dB.0<a<b<1<d<cC.1<a<b<c<dD.0<b<a<1<d<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.《萊茵德紙草書》Rhind Papyrus是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目:把10磅面包分給5個(gè)人,使每人所得成等差數(shù)列,且使較大的三份之和的$\frac{1}{7}$是較小的兩份之和,則最小1份為$\frac{1}{6}$磅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足2a${\;}_{n+1}={a}_{n}+{a}_{n+2}(n∈{N}^{+})$,它的前n項(xiàng)和為Sn,且a5=5,S7=28.
(Ⅰ)求數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和Tn;
(Ⅱ)若數(shù)列{bn}滿足b1=1,b${\;}_{n+1}=_{n}+{q}^{{a}_{n}}$(q>0),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是(  )
A.若命題p,¬q都是真命題,則命題“p∧q”為真命題
B.命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0或y≠0”
C.“x=-1”是“x2-5x-6=0”的必要不充分條件
D.命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”

查看答案和解析>>

同步練習(xí)冊(cè)答案