1.指數(shù)函數(shù)y=ax、y=bx、y=cx、y=dx在同一坐標(biāo)系中的圖象如圖所示,則a,b,c,d與1的大小關(guān)系為(  )
A.0<a<b<1<c<dB.0<a<b<1<d<cC.1<a<b<c<dD.0<b<a<1<d<c

分析 可在圖象中作出直線x=1,通過直線與四條曲線的交點(diǎn)的位置確定出a、b、c、d與1的大小關(guān)系,選出正確選項(xiàng).

解答 解:如圖示:
,
直線x=1與四條曲線的交點(diǎn)坐標(biāo)從下往上依次是:
(1,a),(1,b),(1,d),(1,c),
故有0<a<b<1<d<c,
故選:B.

點(diǎn)評 本題考查對數(shù)函數(shù)的圖象與性質(zhì),作出直線x=1,給出直線與四條曲線的交點(diǎn)坐標(biāo)是正確解答本題的關(guān)鍵,本題的難點(diǎn)是意識到直線x=1與四條曲線交點(diǎn)的坐標(biāo)的縱坐標(biāo)恰好是四個(gè)函數(shù)的底數(shù),此也是解本題的重點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再將所得的圖象向右平移$\frac{π}{12}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,過橢圓C上異于頂點(diǎn)的任一點(diǎn)P作圓O:x2+y2=b2的兩條切線,切點(diǎn)分別為A,B,若直線AB與x,y軸分別交于M,N兩點(diǎn),則$\frac{^{2}}{|OM{|}^{2}}$+$\frac{{a}^{2}}{|ON{|}^{2}}$的值為( 。
A.1B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.兩圓x2+y2+4x-6y+12=0與x2+y2-2x-14y+15=0公共弦所在直線的方程是( 。
A.x-3y+1=0B.6x+2y-1=0C.6x+8y-3=0D.3x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若圓C與圓D:(x+2)2+(y-6)2=1關(guān)于直線l:x-y+5=0對稱,則圓C的方程為(  )
A.(x+2)2+(y-6)2=1B.(x-6)2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x+1)2+(y+3)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2},-1<x<2}\\{2x,x≥2}\end{array}\right.$
(1)求f(f(-2));
(2)畫出函數(shù)f(x)的圖象,根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若{an}是等差數(shù)列,首項(xiàng)a1>0,a1007•a1008<0,a1007+a1008>0則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是(  )
A.2 012B.2 013C.2 014D.2 015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}是公差為正數(shù)的等差數(shù)列,其前n項(xiàng)和為Sn,且a2•a3=15,S4=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足b1=a1,$_{n+1}-_{n}=\frac{1}{{a}_{n}•{a}_{n+1}}$.
①求數(shù)列{bn}的通項(xiàng)公式;
②是否存在正整數(shù)m,n(m≠n),使得b2,bm,bn成等差數(shù)列?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知球的表面積為4π,則球的內(nèi)接正方體的邊長的長為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊答案