(本小題滿分14分)已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式
(2)設(shè),求數(shù)列的前項(xiàng)和
⑴;⑵或
解析試題分析:(1) 由等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列,可建立關(guān)于a1和d的方程,求出a1和d的值,進(jìn)而得到其通項(xiàng)公式;
(2)再(1)的基礎(chǔ)上,可求出或,當(dāng)時(shí),直接根據(jù)等比數(shù)列的前n項(xiàng)和公式直接求出其前n項(xiàng)和.當(dāng)時(shí),它是常數(shù)列,顯然和易求.
⑴由題意知
所以
⑵當(dāng)時(shí),數(shù)列是首項(xiàng)為、公比為8的等比數(shù)列
所以
當(dāng)時(shí),所以
綜上,所以或
考點(diǎn):等差數(shù)列的前n項(xiàng)和公式,等比數(shù)列的定義及性質(zhì),等比數(shù)列的前n項(xiàng)和公式.
點(diǎn)評(píng):本小題用到的公式有:(1)等差數(shù)列的前n項(xiàng)和公式:;(2)等比數(shù)列的前n項(xiàng)和公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知數(shù)列滿足,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求滿足不等式的所有正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知函數(shù)
的圖象上。
(1)求數(shù)列的通項(xiàng)公式;
(2)令求數(shù)列
(3)令證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知數(shù)列的各項(xiàng)均為正實(shí)數(shù),且其前項(xiàng)和滿足。(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{}中,,并且對(duì)任意都有成立,令.
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù),數(shù)列滿足:,N*.
(1)求數(shù)列的通項(xiàng)公式;
(2)令函數(shù),數(shù)列滿足:,N*),
求證:對(duì)于一切的正整數(shù),都滿足:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在數(shù)列中,,,.
(1)證明數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)證明不等式,對(duì)任意皆成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在各項(xiàng)均為實(shí)數(shù)的等比數(shù)列中,,則 ( )
A.2 | B. 8 | C.16 | D.32 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com