2.雙曲線的中心在原點(diǎn),離心率等于2,若它的一個(gè)頂點(diǎn)恰好是拋物線y2=8x的焦點(diǎn),則雙曲線的方程為$\frac{{x}^{2}}{1}-\frac{{y}^{2}}{3}=1$.

分析 求出拋物線的焦點(diǎn)坐標(biāo),利用雙曲線的離心率求出a,然后求解b,即可得到雙曲線方程.

解答 解:雙曲線的中心在原點(diǎn),離心率等于2,若它的一個(gè)頂點(diǎn)恰好是拋物線y2=8x的焦點(diǎn),
可得c=2,a=1,則b=$\sqrt{3}$,
所求的雙曲線方程為:$\frac{{x}^{2}}{1}-\frac{{y}^{2}}{3}=1$.
故答案為:$\frac{{x}^{2}}{1}-\frac{{y}^{2}}{3}=1$.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,雙曲線方程的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.從一個(gè)正方體的6個(gè)面中任取2個(gè),則這2個(gè)面恰好互相平行的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=ln(2x+3)+x2
(1)討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[-1,$\frac{{e}^{2}-3}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一程序框圖如圖所示,如果輸出的函數(shù)值在區(qū)間[1,2]內(nèi),那么輸入實(shí)數(shù)x的取值范圍是(  )
A.(-∞,0)B.[-1,0]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語(yǔ)聽(tīng)力測(cè)試中的成績(jī)(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x+y的值為( 。
A.8B.10C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=xex(e為自然對(duì)數(shù)的底)在(1,f(1))點(diǎn)處的切線方程是(  )
A.y=2ex-eB.y=2ex-2eC.y=ex-eD.y=ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知橢圓${C_1}:\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({{a_1}>{b_1}>0})$與雙曲線${C_2}:\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}=1({{a_2}>0,{b_2}>0})$有相同的焦點(diǎn)F1,F(xiàn)2,點(diǎn)P是兩曲線的一個(gè)公共點(diǎn),且PF1⊥PF2,e1,e2分別是兩曲線C1,C2的離心率,則$9e_1^2+e_2^2$的最小值是( 。
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.運(yùn)行如圖所示的算法框圖,則輸出的結(jié)果S為( 。
A.$\frac{1}{2}$B.0C.-1D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.方程$(x+y-2)\sqrt{{x^2}+{y^2}-9}=0$表示的曲線是( 。
A.一條直線和一個(gè)圓B.一條直線和半個(gè)圓
C.兩條射線和一個(gè)圓D.一條線段和半個(gè)圓

查看答案和解析>>

同步練習(xí)冊(cè)答案