已知某圓的極坐標方程為,若點在該圓上,則的最大值是_______

 

【答案】

【解析】

試題分析:極坐標方程,整理的,圓心半徑看作連接的直線斜率,當直線與圓相切時,斜率取得最值,設直線為

考點:極坐標方程,直線與圓的位置關系

點評:數(shù)形結合法將所求轉化為切線斜率,進而利用直線與圓相切得到求解,此題用到了數(shù)形結合法,此法解題時經(jīng)常用到,本題難度適中

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某圓的極坐標方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程,并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.(5分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知某圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程.
(2)已知二階矩陣M有特征值λ=8及對應的一個特征向量e1=
.
1
1
.
,且矩陣M對應的變換將點(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應的一個特征向量e2的坐標之間的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程;并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•?谀M)已知某圓的極坐標方程是p2-4
2
pcos(θ-
π
4
)+6=0

求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點(x,y)中xy的最大值和最小值.

查看答案和解析>>

同步練習冊答案