精英家教網 > 高中數學 > 題目詳情
(2012•東城區(qū)模擬)若復數(1+ai)(2+i)=3-i,則實數a的值為
-1
-1
分析:把給出的等式左邊采用多項式乘以多項式展開,然后利用等式兩邊的復數相等進行運算.
解答:解:由(1+ai)(2+i)=3-i,得(2-a)+(2a+1)i=3-i.
所以
2-a=3
2a+1=-1
,解得a=-1.
故答案為-1.
點評:本題考查了復數代數形式的乘除運算,考查了復數相等的概念,兩個復數相等,當且僅當是部等于實部,虛部等于虛部,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)已知sin(45°-α)=
2
10
,且0°<α<90°,則cosα=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數列{an}滿足:An=
F(n,2)
F(2,n)
(n∈N+),若對任意正整數n,都有an≥ak(k∈N*成立,則ak的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)已知函數f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)在R上是增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)已知x,y,z∈R,若-1,x,y,z,-3成等比數列,則xyz的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)已知函數f(x)=x
1
2
,給出下列命題:
①若x>1,則f(x)>1;
②若0<x1<x2,則f(x2)-f(x1)>x2-x1;
③若0<x1<x2,則x2f(x1)<x1f(x2);
④若0<x1<x2,則
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正確命題的序號是
①④
①④

查看答案和解析>>

同步練習冊答案