【題目】已知橢圓:的離心率為,橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形面積為2.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點(diǎn),且與軸,軸交于兩點(diǎn).
(i)若,求的值;
(ii)若點(diǎn)的坐標(biāo)為,求證:為定值.
【答案】(1) (2) (i)(ii)見(jiàn)解析
【解析】分析:(1)根據(jù)橢圓的離心率和三角形的面積即可求出a2=4,b2=2,則橢圓方程可得,
(2)(i)根據(jù)根與系數(shù)的關(guān)系以及向量的數(shù)量積的運(yùn)算即可求出,
(ii)根據(jù)根與系數(shù)的關(guān)系以及向量的數(shù)量積的運(yùn)算即可求出.
詳解:(1)因?yàn)?/span>滿足,由離心率為,所以,
即,代入得.
又橢圓的頂點(diǎn)與其兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為2,
即,即,,以上各式聯(lián)立解得,
則橢圓方程為
(2)(i)直線與軸交點(diǎn)為,與軸交點(diǎn)為,
聯(lián)立消去得,
,
設(shè),則
又,由得
解得,由得
(ii)由(i)知,
所以
,
,
,
為定值
所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)數(shù)學(xué)學(xué)院擬從往年的智慧隊(duì)和理想隊(duì)中選拔4名大學(xué)生組成志愿者招募宣傳隊(duì).往年的智慧對(duì)和理想隊(duì)的構(gòu)成數(shù)據(jù)如下表所示,現(xiàn)要求選出的4名大學(xué)生中兩隊(duì)中的大學(xué)生都要有.
(1)求選出的4名大學(xué)生僅有1名女生的概率;
(2)記選出的4名大學(xué)生中女生的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了解本市萬(wàn)名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽(tīng)寫考試,發(fā)現(xiàn)其成績(jī)服從正態(tài)分布,現(xiàn)從某校隨機(jī)抽取了名學(xué)生,將所得成績(jī)整理后,繪制出如圖所示的頻率分布直方圖.
(1)估算該校名學(xué)生成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)求這名學(xué)生成績(jī)?cè)?/span>內(nèi)的人數(shù);
(3)現(xiàn)從該校名考生成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人,該兩人成績(jī)排名(從高到低)在全市前名的人數(shù)記為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)有學(xué)生480名,對(duì)他們進(jìn)行政治面貌和性別的調(diào)查,其結(jié)果如下:
性別 | 團(tuán)員 | 群眾 |
男 | 80 | |
女 | 180 |
(1)若隨機(jī)抽取一人,是團(tuán)員的概率為,求,;
(2)在團(tuán)員學(xué)生中,按性別用分層抽樣的方法,抽取一個(gè)樣本容量為5的樣本,然后在這5名團(tuán)員中任選2人,求兩人中至多有1個(gè)女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)若是定義域上的單調(diào)函數(shù),求的取值范圍.
(2)設(shè),分別為的極大值和極小值,若,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>R的奇函數(shù).
(1)求t的值,并寫出的解析式;
(2)判斷在R上的單調(diào)性,并用定義證明;
(3)若函數(shù)在上的最小值為,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,,.
(1)命題p:“,都有”,若命題p為真命題,求a的值;
(2)若“”是“”的必要條件,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com