分析 (1)由r=$\frac{1}{2}\sqrt{{D}^{2}+{E}^{2}-4F}$,得$\frac{1}{2}\sqrt{(1+a)^{2}+{a}^{2}-4a}$=$\frac{1}{2}$,由此求得a的值,從而求得所求圓C的方程.
(2)先求出所以M(1,0),N(a,0),假設(shè)存在實(shí)數(shù)a,當(dāng)直線AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=k(x-1),代入x2+y2=4,利用韋達(dá)定理,根據(jù)NA、NB的斜率之和等于零求得a的值.經(jīng)過檢驗(yàn),當(dāng)直線AB與x軸垂直時(shí),這個(gè)a值仍然滿足∠ANM=∠BNM,從而得出結(jié)論.
解答 解:(1)由r=$\frac{1}{2}\sqrt{{D}^{2}+{E}^{2}-4F}$
得$\frac{1}{2}\sqrt{(1+a)^{2}+{a}^{2}-4a}$=$\frac{1}{2}$,
所以a=1或a=0,
故所求圓C的方程為x2-2x+y2-y+1=0或x2-x+y2=0;
(2)令y=0,得x2-(1+a)x+a=0,即(x-1)(x-a)=0,求得x=1,或x=a,
所以M(1,0),N(a,0).
假設(shè)存在實(shí)數(shù)a,當(dāng)直線AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=k(x-1),
代入x2+y2=4得,(1+k2)x2-2k2x+k2-4=0,
設(shè)A(x1,y1),B(x2,y2),從而x1+x2=$\frac{2{k}^{2}}{1+{k}^{2}}$,x1x2=$\frac{{k}^{2}-4}{1+{k}^{2}}$.
因?yàn)镹A、NB的斜率之和為$\frac{{y}_{1}}{{x}_{1}-a}$+$\frac{{y}_{2}}{{x}_{2}-a}$=$\frac{k[({x}_{1}-1)({x}_{2}-a)+({x}_{2}-1)({x}_{1}-a)]}{({x}_{1}-a)({x}_{2}-a)}$,
而(x1-1)(x2-a)+(x2-1)(x1-a)=2x1x2-(a+1)(x2+x1)+2a=$\frac{2a-8}{1+{k}^{2}}$,
因?yàn)椤螦NM=∠BNM,所以,NA、NB的斜率互為相反數(shù),$\frac{{y}_{1}}{{x}_{1}-a}$+$\frac{{y}_{2}}{{x}_{2}-a}$=0,即$\frac{2a-8}{1+{k}^{2}}$=0,得a=4.
當(dāng)直線AB與x軸垂直時(shí),仍然滿足∠ANM=∠BNM,即NA、NB的斜率互為相反數(shù).
綜上,存在a=4,使得∠ANM=∠BNM.
點(diǎn)評(píng) 本題主要考查求圓的標(biāo)準(zhǔn)方程,直線和圓的位置關(guān)系,直線的傾斜角和斜率,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-∞,1) | C. | (0,1) | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (-1,1] | C. | [-1,+∞) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com