7.根據(jù)如圖所示的偽代碼,最后輸出的S的值為55.

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S=1+2+3+4+5+…+10的值,利用等差數(shù)列的求和公式計算即可得解.

解答 解:分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,可知:
該程序的作用是累加并輸出滿足條件S=1+2+3+4+5+…+10值.
由于:S=1+2+3+4+5+…+10=55,
故輸出的S值為55.
故答案為:55;

點評 本題考查的知識點是偽代碼,其中根據(jù)已知分析出循環(huán)的循環(huán)變量的初值,終值及步長,是解答的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知圓C的方程為x2+y2-4x=0,過點A(4,0)斜率為k的直線l與圓交于另一點B,且AB=2$\sqrt{2}$.
(1)求直線l的方程;
(2)k>0時,求過點B且與圓C相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,己知$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,b=ccosA,又△ABC的面積為6.
(Ⅰ)求△ABC的三邊長;
(Ⅱ)若D為BC邊上的一點,且CD=1,求tan∠BAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線C的方程為$\frac{x^2}{4}-\frac{y^2}{5}=1$,其左、右焦點分別是F1、F2.已知點M坐標為(2,1),雙曲線C上點 P(x0,y0)(x0>0,y0>0)滿足$\frac{{\overrightarrow{{P}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{P}{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,則${S_{△{P}{M}{F_1}}}-{S_{△{P}{M}{F_2}}}$=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.建立集合A={a,b,c}到集合B={-1,0,1}的映射f:A→B,滿足f(a)+f(b)+f(c)=0的不同映射有( 。
A.6個B.7個C.8個D.9個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設[x]表示不超過x的最大整數(shù),若[π]=3,[-1.2]=-2.給出下列命題:
①對任意的實數(shù)x,都有x-1<[x]≤x.
②對任意的實數(shù)x、y,都有[x+y]≥[x]+[y].
③[lg1]+[lg2]+[lg3]+…+[lg2014]+[lg2015]=4940.
④若函數(shù)f(x)=[x[x]],當x∈[0,n)(n∈N*)時,令f(x)的值域為A,記集合A中元素個數(shù)為an,則$\frac{{a}_{n}+49}{n}$的最小值為$\frac{19}{2}$,其中所有真命題的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,圓C:x2-(1+a)x+y2-ay+a=0.
(1)若圓C的半徑為$\frac{1}{2}$,求圓C的方程;
(2)已知a>1,圓C與x軸相交于兩點M,N(點M在點N的左側).過點M任作一條直線與圓O:x2+y2=4相交于兩點A,B.問:是否存在實數(shù)a,使得∠ANM=∠BNM?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(文)已知等差數(shù)列{an}的首項為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=($\frac{1}{2}$)x的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證:數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設數(shù)列{an}的首項為p=-1,公差d=1,是否存在這樣的正整數(shù)n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3))設{an}的公差d=1,是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-lnx;g(x)=x3-x2-8x-1
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若對任意${x_1}∈[1{,^{\;}}e]$,存在${x_2}∈[0{,^{\;}}3]$使得f(x1)≤g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案