甲、乙兩容器中分別盛有濃度為10%,20%的某種溶液500ml,同時從甲、乙兩個容器中各取出100ml溶液,將其倒入對方的容器攪勻,這稱為一次調(diào)和.記a1=10%,b1=20%,經(jīng)n-1(n≥2)次調(diào)和后甲、乙兩個容器的溶液濃度為an,bn
(Ⅰ)試用an-1,bn-1表示an,bn;
(Ⅱ)求證:數(shù)列{an-bn}是等比數(shù)列,數(shù)列{an+bn}是常數(shù)列.
考點:等比數(shù)列的性質(zhì)
專題:應用題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由題意,經(jīng)n-1(n≥2,n∈N*)次調(diào)和后甲、乙兩個容器中的溶液濃度分別為an,bn,從而可用an-1,bn-1表示an,bn;
(Ⅱ)利用(Ⅰ)的結(jié)論,化簡可得結(jié)論
解答: (Ⅰ)解:由題意,經(jīng)n-1(n≥2,n∈N*)次調(diào)和后甲、乙兩個容器中的溶液濃度分別為an,bn,
∴an=
400an-1+100bn-1
500
=
4
5
an-1+
1
5
bn-1,
bn=
400bn-1+100an-1
500
=
4
5
bn-1+
1
5
an-1;
(Ⅱ)證明:由(1)知,bn-an=(
4
5
bn-1+
1
5
an-1)-(
4
5
an-1+
1
5
bn-1)=
3
5
(bn-1-an-1)(n≥2).
可知數(shù)列{bn-an}為首項是b1-a1=10%,公比為
3
5
的等比數(shù)列,
∴bn-an=(b1-a1)(
3
5
n-1=10%•(
3
5
n-1=
1
10
•(
3
5
n-1
bn+an=(
4
5
bn-1+
1
5
an-1)+(
4
5
an-1+
1
5
bn-1)=bn-1+an-1,
∴數(shù)列{an+bn}是常數(shù)列.
點評:本題考查數(shù)列的性質(zhì)和應用,考查學生利用數(shù)學知識解決實際問題,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求a,b的值;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)已知f(t)+f(t-1)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z=(a2-7a+6)+(a2-5a-6)i,(a∈R)
(1)當a為何值時,z是實數(shù);
(2)當a為何值時,z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求y=
x2-4x+5
x-1
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“對任意x∈R,都有x2+2x+a>0恒成立”與命題q:“存在x∈R,x2+ax+4=0”都是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x,y)=(1+
m
y
x(m>0,y>0),若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求∑ai

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為1,公差為d的等差數(shù)列,數(shù)列{bn}是首項為1,公比為3的等比數(shù)列.已知a5=b5
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an•bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanα=-3,則
sinα-cosα
sinα+cosα
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=e2x+1的導函數(shù)f′(x)=
 

查看答案和解析>>

同步練習冊答案